卧薪尝胆,厚积薄发。
HNOI2014 画框
Date: Sun Mar 24 21:53:15 CST 2019
In Category:
NoCategory
Description:
给一个二分图和
$i$
与
$j$
匹配的两个权值
$x[i][j]$
和
$y[i][j]$
,求一组匹配,最小化:
$$
\sum_{i=1}^na[i][match[i]]\times \sum_{i=1}^nb[i][match[i]]
$$
$1\leqslant n\leqslant 70$
Solution:
不难看出和最小乘积生成树本质是一个东西,只是把
$Kruskal$
换成了
$KM$
而已。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n;
#define MAXN 75
typedef long long ll;
ll x[MAXN][MAXN],y[MAXN][MAXN],w[MAXN][MAXN];
#define INFLL 0x3f3f3f3f3f3f3f3f
struct point
{
ll x,y;
};
point operator - (point a,point b){return (point){a.x - b.x,a.y - b.y};}
ll operator * (point a,point b){return a.x * b.y - a.y * b.x;}
point ans;
point min(point a,point b)
{
if(a.x * a.y < b.x * b.y)return a;
else return b;
}
int match[MAXN];
bool va[MAXN],vb[MAXN];
ll la[MAXN],lb[MAXN],delta;
bool find(int i)
{
va[i] = true;
for(int j = 1;j <= n;++j)
{
if(!vb[j])
{
if(la[i] + lb[j] == w[i][j])
{
vb[j] = true;
if(match[j] == -1 || find(match[j]))
{
match[j] = i;
return true;
}
}
else
{
delta = min(delta,la[i] + lb[j] - w[i][j]);
}
}
}
return false;
}
point KM()
{
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)w[i][j] *= -1;
memset(match,-1,sizeof(match));
for(int i = 1;i <= n;++i)
{
la[i] = -INFLL;lb[i] = 0;
for(int j = 1;j <= n;++j)la[i] = max(la[i],w[i][j]);
}
for(int k = 1;k <= n;++k)
{
while(true)
{
memset(va,false,sizeof(va));
memset(vb,false,sizeof(vb));
delta = INFLL;
if(find(k))break;
for(int i = 1;i <= n;++i)
{
if(va[i])la[i] -= delta;
if(vb[i])lb[i] += delta;
}
}
}
point ans;ans.x = 0;ans.y = 0;
for(int i = 1;i <= n;++i)
{
ans.x += x[match[i]][i];
ans.y += y[match[i]][i];
}/*cout << " : " << endl;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
cout << w[i][j] << " ";
}
cout << endl;
}
for(int i = 1;i <= n;++i)cout << match[i] << " " << i << endl;*/
return ans;
}
void solve(point A,point B)
{
ans = min(ans,min(A,B));
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)w[i][j] = (B.x - A.x) * y[i][j] - (B.y - A.y) * x[i][j];
point C = KM();
if((B - A) * (C - A) >= 0)return;
solve(A,C);solve(C,B);
return;
}
void work()
{
ans.x = INFLL;ans.y = INFLL;
scanf("%d",&n);
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)x[i][j] = rd();
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)y[i][j] = rd();
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)w[i][j] = x[i][j];
point A = KM();
for(int i = 1;i <= n;++i)for(int j = 1;j <= n;++j)w[i][j] = y[i][j];
point B = KM();
solve(A,B);
cout << ans.x * ans.y << endl;
return;
}
int main()
{
int testcases = rd();
while(testcases--)work();
return 0;
}
In tag:
算法-分治 图论-二分图-KM算法
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡