卧薪尝胆,厚积薄发。
APIO2014 序列分割
Date: Sat Sep 15 21:36:10 CST 2018
In Category:
NoCategory
Description:
把一个长为
$n$
的块切成
$k+1$
块,每次获得两个新产生的块的元素和的乘积的分数,最大化最后的总得分。
$1\le n \le 100000$
Solution:
可以发现得分只与切的位置有关而与切的顺序无关,所以状态转移方程为
$f[i][k]=\max(f[j][k-1]+(s[i]-s[j])\times s[j])$
,可以用斜率优化进行优化,式子变形后为
$f[j][k-1]-s[j]\times s[j]=-s[i]\times s[j]+f[i][k]$
,
$y=f[j][k-1]-s[j]\times s[j],x=s[j],k=-s[i],b=f[i][k]$
横坐标单调递增,
$k$
单调递减,维护一个上凸壳就行了。
注意斜率优化一定要判断相等的情况,不然会卡在一个相等的位置不往后动。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,k;
#define MAXN 100010
#define MAXK 201
typedef long long ll;
ll a[MAXN],sum[MAXN];
ll f[2][MAXN];
ll y[MAXN];
int q[MAXN],head,tail;
double slope(int cur,int a,int b)
{
return (double)((f[cur][a] - sum[a] * sum[a]) - (f[cur][b] - sum[b] * sum[b])) / (double)(sum[a] - sum[b]);
}
int g[MAXK][MAXN];
int s[MAXN],top = 0;
int main()
{
scanf("%d%d",&n,&k);
for(int i = 1;i <= n;++i)scanf("%lld",&a[i]);
for(int i = 1;i <= n;++i)sum[i] = sum[i - 1] + a[i];
memset(f,0xc0,sizeof(f));
f[0][0] = 0;y[0] = 0;
int cur = 0;
for(int i = 1;i <= k + 1;++i)
{
head = 1;tail = 0;
cur = cur ^ 1;
memset(f[cur],0xc0,sizeof(f[cur]));
q[++tail] = 0;
for(int j = 1;j <= n;++j)
{
while(head < tail && -(double)sum[j] * (double)(sum[q[head + 1]] - sum[q[head]]) <= (double)(y[q[head + 1]] - y[q[head]]))++head;
f[cur][j] = f[cur ^ 1][q[head]] + (sum[j] - sum[q[head]]) * sum[q[head]];
g[i][j] = q[head];//cout << q[head] << endl;
while(head < tail && (double)(y[j] - y[q[tail]]) * (double)(sum[q[tail]] - sum[q[tail - 1]]) >= (double)(y[q[tail]] - y[q[tail - 1]]) * (double)(sum[j] - sum[q[tail]]))--tail;
q[++tail] = j;y[j] = f[cur ^ 1][j] - sum[j] * sum[j];//cout << i << " " << j << " " << f[cur][j] << endl;
}
}
int pos = n;
int w = k + 1;
while(g[w][pos] != 0)
{
s[++top] = g[w][pos];
pos = g[w][pos];
--w;
}
cout << f[cur][n] << endl;
for(int i = top;i >= 1;--i)printf("%d ",s[i]);
puts("");
return 0;
}
In tag:
DP-斜率优化DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡