卧薪尝胆,厚积薄发。
Phorni
Date: Fri Mar 29 15:27:45 CST 2019
In Category:
NoCategory
Description:
给一个字符串和
$n$
个位置,支持前端插入和询问编号在某个区间内的所有位置所代表的后缀字典序最小的是哪个。
$1\leqslant n\leqslant 500000,1\leqslant m\leqslant 800000$
Solution:
后缀平衡树的模板题,用后缀平衡树
$O(1)$
查询排名然后用线段树维护区间最小值即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
char getc()
{
register char c = getchar();
while(c != 'I' && c != 'Q' && c != 'C')c = getchar();
return c;
}
int n,m,len,type;
#define MAXN 500010
int p[MAXN];
#define MAXL 800010
char c[MAXL];
#define N -100000000000000000000.0
#define F 100000000000000000000.0
typedef long double ld;
namespace BT
{
struct node
{
int lc,rc;
double val;
int siz;
}t[MAXL];
bool cmp(int a,int b)
{
if(c[a] != c[b])return c[a] < c[b];
else return t[a - 1].val < t[b - 1].val;
}
int root;
int p[MAXL];
void getp(int rt)
{
if(rt == 0)return;
getp(t[rt].lc);
p[++p[0]] = rt;
getp(t[rt].rc);
t[rt].lc = t[rt].rc = t[rt].siz = 0;
return;
}
void build(int &rt,int l,int r)
{
if(l > r){rt = 0;return;}
int mid = ((l + r) >> 1);
rt = p[mid];
t[rt].siz = 1;
build(t[rt].lc,l,mid - 1);
build(t[rt].rc,mid + 1,r);
if(t[rt].lc)t[rt].siz += t[t[rt].lc].siz;
if(t[rt].rc)t[rt].siz += t[t[rt].rc].siz;
return;
}
void rebuild(int &rt)
{//cout << t[rt].siz << " : ";
p[0] = 0;
getp(rt);//cout << p[0] << endl;
build(rt,1,p[0]);
return;
}
void insert(int &rt,int v,ld L,ld R,int tag)
{
if(rt == 0)
{
rt = v;
t[rt].siz = 1;
t[rt].val = (L + R) / 2;
return;
}
int flag = tag;
if(cmp(v,rt) && ((t[t[rt].lc].siz + 1) * 5 > (t[rt].siz + 1) * 4))tag = 1;
if(!cmp(v,rt) && ((t[t[rt].rc].siz + 1) * 5 > (t[rt].siz + 1) * 4))tag = 1;
if(cmp(v,rt))insert(t[rt].lc,v,L,t[rt].val,tag);
else insert(t[rt].rc,v,t[rt].val,R,tag);
t[rt].siz = 1;
if(t[rt].lc)t[rt].siz += t[t[rt].lc].siz;
if(t[rt].rc)t[rt].siz += t[t[rt].rc].siz;
if(!flag && tag)rebuild(rt);
return;
}
}
#define fi first
#define se second
#define state pair<long double,int>
namespace ST
{
struct node
{
int lc,rc;
state s;
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)
{
t[rt].s.fi = BT::t[p[l]].val;
t[rt].s.se = l;
return;
}
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
t[rt].s = min(t[t[rt].lc].s,t[t[rt].rc].s);
return;
}
void add(int rt,int p,double val,int l,int r)
{
if(l == r){t[rt].s.fi = val;return;}
if(p <= mid)add(t[rt].lc,p,val,l,mid);
else add(t[rt].rc,p,val,mid + 1,r);
t[rt].s = min(t[t[rt].lc].s,t[t[rt].rc].s);
return;
}
state query(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].s;
if(R <= mid)return query(t[rt].lc,L,R,l,mid);
if(L > mid)return query(t[rt].rc,L,R,mid + 1,r);
return min(query(t[rt].lc,L,R,l,mid),query(t[rt].rc,L,R,mid + 1,r));
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&len,&type);
scanf("%s",c + 1);
for(int i = 1,j = len;i < j;++i,--j)swap(c[i],c[j]);
for(int i = 1;i <= n;++i)scanf("%d",&p[i]);
for(int i = 1;i <= len;++i)BT::insert(BT::root,i,N,F,0);
ST::build(ST::root,1,n);
int x,pos,l,r;
char opt;
int lastans = 0;
for(int i = 1;i <= m;++i)
{
opt = getc();
if(opt == 'I')
{
++len;
c[len] = (rd() ^ (type * lastans)) + 'a';
BT::insert(BT::root,len,N,F,0);
}
if(opt == 'C')
{
x = rd();pos = rd();
p[x] = pos;
ST::add(ST::root,x,BT::t[pos].val,1,n);
}
if(opt == 'Q')
{
l = rd();r = rd();
lastans = ST::query(ST::root,l,r,1,n).se;
printf("%d\n",lastans);
}
}
return 0;
}
In tag:
字符串-后缀平衡树
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡