卧薪尝胆,厚积薄发。
Gty的妹子序列
Date: Mon Jul 16 16:18:38 CST 2018
In Category:
NoCategory
Description:
在线询问区间逆序对数。
$1\le n \le 50000$
Solution:
能不用
$map$
一定不要用!!!
预处理出
$f[i][j]$
表示从
$i$
块的开头开始到第
$j$
个位置的逆序对数,可以用树状数组处理,
$c[i][j]$
表示前
$i$
块小于等于
$j$
的数的个数。
询问时只用考虑前面零散的之间和后面的产生的逆序对,把后面零散的插入树状数组中,中间整块的直接查询
$c$
数组即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 50010
int a[MAXN];
//block
#define MAXB 240
int L[MAXB],R[MAXB],tot,belong[MAXN];
inline void build(int l,int r,int k)
{
L[k] = l;R[k] = r;
for(register int i = l;i <= r;++i)belong[i] = k;
return;
}
//BIT
struct BIT
{
int c[MAXN];
pair<int,int> s[MAXN];
int top;
BIT(){memset(c,0,sizeof(c));top = 0;}
inline int lowbit(int x){return x&(-x);}
inline void add(int p,int k){s[++top] = make_pair(p,k);for(register int i = p;i <= n;i += lowbit(i))c[i] += k;return;}
inline void dec(int p,int k){for(register int i = p;i <= n;i += lowbit(i))c[i] -= k;return;}
inline int query(int p){int res = 0;for(register int i = p;i >= 1;i -= lowbit(i))res += c[i];return res;}
inline void reset(){while(top > 0){dec(s[top].first,s[top].second);--top;}return;}
}l;
//discritise
int s[MAXN],cur = 0;
int p[MAXN];
bool cmp(int x,int y){return a[x] < a[y];}
int c[MAXB][MAXN],f[MAXB][MAXN];
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int main()
{
n = read();
for(register int i = 1;i <= n;++i)a[i] = read();
tot = sqrt(n);
for(register int i = 1;i <= tot;++i)build((i - 1) * tot + 1,i * tot,i);
if(tot * tot < n){build(R[tot] + 1,n,tot + 1);++tot;}
for(register int i = 1;i <= n;++i)s[i] = i;
sort(s + 1,s + 1 + n,cmp);
for(register int i = 1;i <= n;++i)
{
if(a[s[i]] == a[s[i - 1]])p[s[i]] = cur;
else p[s[i]] = ++cur;
}
for(register int i = 1;i <= tot;++i)
{
for(register int j = L[i];j <= n;++j)
{
f[i][j] = f[i][j - 1] + l.query(cur) - l.query(p[j]);
l.add(p[j],1);
}
l.reset();
}
for(register int i = 1;i <= tot;++i)
{
for(int j = L[i];j <= R[i];++j)++c[i][p[j]];
for(int j = 1;j <= cur;++j)c[i][j] += c[i][j - 1];
for(int j = 1;j <= cur;++j)c[i][j] += c[i - 1][j];
}
m = read();
register int a,b;
register int lastans = 0;
for(register int i = 1;i <= m;++i)
{
a = read();b = read();a ^= lastans;b ^= lastans;
register int ans = 0;
if(belong[a] == belong[b])
{
for(register int k = a;k <= b;++k)
{
ans += l.query(cur) - l.query(p[k]);
l.add(p[k],1);
}
l.reset();
}
else
{
ans = f[belong[a] + 1][b];
for(register int k = L[belong[b]];k <= b;++k)l.add(p[k],1);
for(register int k = R[belong[a]];k >= a;--k)
{
ans += c[belong[b] - 1][p[k] - 1] - c[belong[a]][p[k] - 1] + l.query(p[k] - 1);
l.add(p[k],1);
}
l.reset();
}
printf("%d\n",(lastans = ans));
}
return 0;
}
In tag:
数据结构-分块
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡