卧薪尝胆,厚积薄发。
CQOI2015 选数
Date: Mon Dec 10 16:18:40 CST 2018
In Category:
NoCategory
Description:
求从
$[L,R]$
中选
$n$
个可以相同的数字,他们的最大公约数为
$k$
的方案数。
$1\leqslant n,k,L,R\leqslant 10^9,R-L\leqslant 10^5$
Solution:
经典的莫比乌斯反演:
$$
\begin{align}
&\sum_{i_1=L}^R\sum_{i_2=L}^R\cdots\sum_{i_n=L}^R[\gcd(i_1,i_2,\dots,i_n)=k]\\
=&\sum_{i_1=l}^r\sum_{i_2=l}^r\cdots\sum_{i_n=l}^r\sum_{d|i_1,i_2,\dots,i_n}\mu(d)(l=(L-1)/k+1,r=R/k)\\
=&\sum_{d=1}^r\mu(d)(r'-l')^n(r'=r/d,l'=(l-1)/d)
\end{align}
$$
右边可以除法分块,求
$\mu$
的前缀和可以用杜教筛,注意
$[1,l]$
和
$[l+1,r]$
应该分开求,因为
$L/l$
为
$0$
时会出错。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cctype>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,k,L,R;
#define MAXN 1000010
bool isprime[MAXN];
int prime[MAXN],tot = 0;
ll mu[MAXN];
ll sum[MAXN];
map<int,ll> mu_;
#define MOD 1000000007
ll calc(int k)
{
if(k < MAXN)return sum[k];
if(mu_.find(k) != mu_.end())return mu_[k];
if(k == 1)return 1;
if(k == 0)return 0;
ll res = 1;
for(int l = 2,r;l <= k;l = r + 1)
{
r = k / (k / l);
res = (res - (r - l + 1) * calc(k / l) % MOD + MOD) % MOD;
}
mu_[k] = res;
return res;
}
ll power(ll a,ll b)
{
ll res = 1;
while(b > 0)
{
if(b & 1)res = res * a % MOD;
a = a * a % MOD;
b = b >> 1;
}
return res;
}
int main()
{
scanf("%lld%lld%lld%lld",&n,&k,&L,&R);
L = (L - 1) / k + 1;R = R / k;
for(int i = 2;i < MAXN;++i)isprime[i] = true;
mu[1] = sum[1] = 1;
for(int i = 2;i < MAXN;++i)
{
if(isprime[i])mu[i] = -1,prime[++tot] = i;
for(int j = 1;j <= tot && i * prime[j] < MAXN;++j)
{
isprime[i * prime[j]] = false;
if(i % prime[j] == 0){mu[i * prime[j]] = 0;break;}
else mu[i * prime[j]] = -1 * mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
ll ans = 0;
--L;
for(int l = 1,r;l <= L;l = r + 1)
{
r = min(R / (R / l),L / (L / l));
ans = (ans + (calc(r) - calc(l - 1)) * power(R / l - L / l,n) % MOD + MOD) % MOD;
}
for(int l = L + 1,r;l <= R;l = r + 1)
{
r = R / (R / l);
ans = (ans + (calc(r) - calc(l - 1)) * power(R / l,n) % MOD + MOD) % MOD;
}
cout << ans << endl;
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡