卧薪尝胆,厚积薄发。
CQOI2015 任务查询系统
Date: Sun Jun 03 00:03:56 CST 2018
In Category:
NoCategory
Description:
有若干个任务,第
$i$
个任务从
$S_i$
开始,
$E_i$
结束,优先级为
$P_i$
,求在某一时刻下优先级最小的
$K_i$
个任务的优先级之和,强制在线。
$1\le N\le 100000$
Solution:
对时间建主席树,在
$S_i$
插入
$P_i$
,在
$E_i+1$
删除
$P_i$
,每次查询时像区间第
$K$
大一样在线段树上二分,注意离散化后有多个相同的值可能不全被取到,这时要只取出需要的。注意主席树的建树,可能在一棵里插入多个值,这时每一次插入重建一条链的做法行不通,于是每次判断这次要修改的点和上一棵树对应的点是否一样,一样说明这个点没有被操作过,此时新建一个点并上一颗树对应点的信息赋给他。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
using namespace std;
typedef long long ll;
int n,m;
int read()
{
char c = getchar();
int res = 0;
while(c < '0' || c > '9')c = getchar();
while('0' <= c && c <= '9')
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
#define MAXN 100010
int s[MAXN],to[MAXN],tot = 0;
map<int,int> p;
struct option
{
int t,pr;
bool type;
}q[MAXN << 1];
int optnum = 0;
void addquery(int a,int b,bool type)
{
++optnum;
q[optnum].t = a;
q[optnum].pr = b;
q[optnum].type = type;
return;
}
bool cmp(option a,option b)
{
return a.t < b.t;
}
struct node
{
int c[2],siz;
ll sum;
node(){c[0] = c[1] = siz = 0;sum = 0;}
}t[MAXN * 50];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
void build(int rt,int l,int r)
{
if(l == r)return;
int mid = ((l + r) >> 1);
build(t[rt].c[0] = newnode(),l,mid);
build(t[rt].c[1] = newnode(),mid + 1,r);
return;
}
void insert(int &rt,int rt_,int k,bool type,int l,int r)
{
if(rt == rt_)
{
rt = newnode();
t[rt] = t[rt_];
}
if(type){t[rt].siz += 1;t[rt].sum += to[k];}
else {t[rt].siz -= 1;t[rt].sum -= to[k];}
if(l == r)return;
int mid = ((l + r) >> 1);
if(k <= mid)insert(t[rt].c[0],t[rt_].c[0],k,type,l,mid);
else insert(t[rt].c[1],t[rt_].c[1],k,type,mid + 1,r);
return;
}
ll query(int p,ll tot)
{
if(tot >= t[root[p]].siz)return t[root[p]].sum;
int l = 1,r = n;
int cur = root[p];
ll res = 0;
while(l < r)
{
if(cur == 0)break;
if(tot <= t[t[cur].c[0]].siz)
{
cur = t[cur].c[0];
r = ((l + r) >> 1);
}
else
{
res += t[t[cur].c[0]].sum;
tot -= t[t[cur].c[0]].siz;
cur = t[cur].c[1];
l = ((l + r) >> 1) + 1;
}
if(l == r && tot <= t[cur].siz)
{
res += t[cur].sum / t[cur].siz * tot;
}
}
return res;
}
int main()
{
n = read();m = read();
int a,b,c;
for(int i = 1;i <= n;++i)
{
a = read();b = read();c = s[i] = read();
addquery(a,c,true);addquery(b + 1,c,false);
}
sort(s + 1,s + 1 + n);
for(int i = 1;i <= n;++i)
{
if(s[i] != s[i - 1])
{
p[s[i]] = ++tot;
to[tot] = s[i];
}
}
sort(q + 1,q + 1 + 2 * n,cmp);
build(root[0] = newnode(),1,n);
for(int i = 1,j = 1;i <= m;++i)
{
root[i] = root[i - 1];
for(;q[j].t <= i && j <= 2 * n;++j)
{
insert(root[i],root[i - 1],p[q[j].pr],q[j].type,1,n);
}
}
ll pre = 1;
int x;
for(int i = 1;i <= m;++i)
{
x = read();a = read();b = read();c = read();
pre = 1 + (a * pre + b) % c;
printf("%lld\n",pre = query(x,pre));
}
return 0;
}
In tag:
数据结构-主席树
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡