卧薪尝胆,厚积薄发。
TJOI2015 棋盘
Date: Fri Sep 07 23:42:30 CST 2018
In Category:
NoCategory
Description:
$n$
行
$m$
列的棋盘,每个棋子的攻击范围是
$3$
行
$p$
列的模板,棋子在第
$1$
行第
$k$
列。求棋子互相不能攻击到的前提下摆放棋子的方案数。
$1\le n \le 10^6,1\le m \le 6$
Solution:
$n$
这么大
$m$
这么小看着是个在
$m$
方向上状压,在
$n$
方向上递推,刚开始认为要压两行所以一直没想出正解,但是发现虽然会有两行交叉,但只有一行的状态会决定转移,也就是说当前这一行虽然会受上一行影响,但是是由上一行决定的,只要记录上一行就可以确定状态,然后就预处理合法状态及转移,然后矩阵快速幂。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n,m;
int l,p;
typedef unsigned int uint;
typedef long long ll;
#define MAXN 1000010
ll tot;
struct matrix
{
unsigned int m[70][70];
matrix(){memset(m,0,sizeof(m));}
friend matrix operator * (matrix a,matrix b)
{
matrix c;
for(int i = 0;i <= tot;++i)
for(int j = 0;j <= tot;++j)
for(int k = 0;k <= tot;++k)
c.m[i][j] += a.m[i][k] * b.m[k][j];
return c;
}
friend matrix operator ^ (matrix a,int b)
{
matrix res = a;--b;
while(b > 0)
{
if(b & 1)res = res * a;
a = a * a;
b = b >> 1;
}
return res;
}
}f;
ll temp[4];
ll blo[70][4];
bool ava[70];
int main()
{
scanf("%d%d",&n,&m);
scanf("%d%d",&l,&p);
for(int i = 1;i <= 3;++i)
for(int j = l;j >= 1;--j)
temp[i] |= (read() << (j - 1));
temp[2] ^= (1 << (l - p - 1));
tot = (1 << m) - 1;
for(ll b = 0;b <= tot;++b)
{
for(int i = 1;i <= 3;++i)
{
ll tmp = 0;
for(ll k = m - 1;k >= 0;--k)
{
if((b >> k) & 1)
{
if(k >= (l - p - 1))tmp |= ((temp[i] << (k - (l - p - 1))) & tot);
else tmp |= (temp[i] >> (l - p - 1 - k));
}
}
blo[b][i] = tmp;
}
ava[b] = true;
for(int i = 0;i < m;++i)
if((blo[b][2] & (1 << i)) && (b & (1 << i)))
ava[b] = false;
}
for(int i = 0;i <= tot;++i)
if(ava[i])
for(int j = 0;j <= tot;++j)
if(ava[j])
if((blo[i][3] & j) == 0 && (i & blo[j][1]) == 0)
f.m[i][j] = 1;
--n;
f = f ^ n;
unsigned int ans = 0;
for(int i = 0;i <= tot;++i)
for(int j = 0;j <= tot;++j)
ans += f.m[i][j];
printf("%u\n",ans);
return 0;
}
In tag:
DP-矩阵加速
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡