卧薪尝胆,厚积薄发。
HNOI2015 接水果
Date: Sun Dec 02 08:57:38 CST 2018
In Category:
NoCategory
Description:
给一棵树还有树上的
$k$
条链,每条链都有权值,多次询问某一条链包含的所有链中权值第
$k$
大的链。
$1\leqslant n\leqslant4\times 10^4$
Solution:
类似区间第
$k$
大那样的做法,整体二分,唯一的问题就是给你
$x$
条链如何快速判断它包含多少条链,这个可以用类似精神污染那道题的做法,用
$dfs$
序转化以下条件就会发现
$dfn[a]$
和
$dfn[b]$
都是一个区间,所以会对一个二维空间中的矩形产生贡献,所以就用扫描线
$+$
树状数组就可以矩形加,单点求值了,注意
$lca=a$
时要特判,代码中为了方便可以使得
$a$
永远是
$dfs$
序较小的点,所以
$x$
坐标的区间就应该小于
$y$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int n,mp,mq;
#define MAXN 80010
int b[MAXN],cnt = 0;
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void addedge(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int dfn[MAXN],tot = 0,siz[MAXN],dep[MAXN];
int f[MAXN][17];
void dfs(int k,int depth)
{
dep[k] = depth;
dfn[k] = ++tot;siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dfn[e[i].to] == 0)
{
f[e[i].to][0] = k;
dfs(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
}
}
return;
}
struct chain
{
int a,b,v,id;
}p[MAXN],p1[MAXN],p2[MAXN];
int ans[MAXN];
namespace CNT
{
struct point
{
int x,y,id;
bool operator < (const point& b)const
{
return x < b.x;
}
}t[MAXN];
int pt = 0;
struct query
{
int x,bot,top,type;
bool operator < (const query &b)const
{
return x < b.x;
}
}q[MAXN * 2];
int qnum = 0;
int res[MAXN];
int lowbit(int x){return x & (-x);}
int c[MAXN];
void add(int p,int x){for(int i = p;i <= n;i += lowbit(i))c[i] += x;return;}
int calc(int p){int res = 0;for(int i = p;i >= 1;i -= lowbit(i))res += c[i];return res;}
void init(){qnum = 0;pt = 0;}
void add_point(int x,int y,int id)
{
res[id] = 0;
t[++pt] = (point){x,y,id};
return;
}
void add_rect(int x1,int y1,int x2,int y2)
{
if(x1 > x2 || y1 > y2)return;
q[++qnum] = (query){x1,y1,y2,1};q[++qnum] = (query){x2 + 1,y1,y2,-1};
return;
}
void calc()
{
sort(t + 1,t + 1 + pt);sort(q + 1,q + 1 + qnum);
int i,j;
for(i = 1,j = 1;i <= pt;++i)
{
while(q[j].x <= t[i].x && j <= qnum)
{
add(q[j].bot,q[j].type);
add(q[j].top + 1,-q[j].type);
++j;
}
res[t[i].id] = calc(t[i].y);
}
for(--j;j >= 1;--j)
{
add(q[j].bot,-q[j].type);
add(q[j].top + 1,q[j].type);
}
return;
}
}
int LCA(int a,int b)
{
if(dep[a] < dep[b])swap(a,b);
for(int i = 16;i >= 0;--i)
if(dep[f[a][i]] >= dep[b])a = f[a][i];
if(a == b)return a;
for(int i = 16;i >= 0;--i)
if(f[a][i] != f[b][i])a = f[a][i],b = f[b][i];
return f[a][0];
}
int skip_to_son(int k,int fa)
{
for(int i = 16;i >= 0;--i)
if(dep[f[k][i]] > dep[fa])k = f[k][i];
return k;
}
void solve(int l,int r,int L,int R)
{
if(L == R)
{
for(int i = l;i <= r;++i)if(p[i].id)ans[p[i].id] = L;
return;
}
int mid = ((L + R) >> 1);
int cnt1 = 0,cnt2 = 0;
CNT::init();
for(int i = l;i <= r;++i)
{
if(p[i].id != 0)
{
CNT::add_point(dfn[p[i].a],dfn[p[i].b],p[i].id);
}
}
for(int i = l;i <= r;++i)
{
if(p[i].id == 0)
{
if(p[i].v <= mid)
{
int lca = LCA(p[i].a,p[i].b);
if(lca == p[i].a)
{
int chi = skip_to_son(p[i].b,p[i].a);
CNT::add_rect(1,dfn[p[i].b],dfn[chi] - 1,dfn[p[i].b] + siz[p[i].b] - 1);
CNT::add_rect(dfn[p[i].b],dfn[chi] + siz[chi],dfn[p[i].b] + siz[p[i].b] - 1,n);
}
else
{
CNT::add_rect(dfn[p[i].a],dfn[p[i].b],dfn[p[i].a] + siz[p[i].a] - 1,dfn[p[i].b] + siz[p[i].b] - 1);
}
p1[++cnt1] = p[i];
}
else p2[++cnt2] = p[i];
}
}
CNT::calc();
for(int i = l;i <= r;++i)
{
if(p[i].id)
{
if(CNT::res[p[i].id] >= p[i].v)p1[++cnt1] = p[i];
else{p[i].v -= CNT::res[p[i].id];p2[++cnt2] = p[i];}
}
}
int cur = l;
for(int i = 1;i <= cnt1;++i)p[cur++] = p1[i];
for(int i = 1;i <= cnt2;++i)p[cur++] = p2[i];
solve(l,l + cnt1 - 1,L,mid);
solve(l + cnt1,r,mid + 1,R);
return;
}
int main()
{
scanf("%d%d%d",&n,&mp,&mq);
for(int i = 1;i < n;++i)addedge(rd(),rd());
dfs(1,1);
for(int k = 1;k <= 16;++k)
for(int i = 1;i <= n;++i)
f[i][k] = f[f[i][k - 1]][k - 1];
for(int i = 1;i <= mp;++i)
{
p[i].a = rd();p[i].b = rd();
p[i].v = rd();b[++cnt] = p[i].v;
if(dfn[p[i].a] > dfn[p[i].b])swap(p[i].a,p[i].b);
}
sort(b + 1,b + 1 + cnt);
cnt = unique(b + 1,b + 1 + cnt) - b - 1;
for(int i = 1;i <= mp;++i)p[i].v = lower_bound(b + 1,b + 1 + cnt,p[i].v) - b;
for(int i = 1;i <= mq;++i)
{
p[i + mp].a = rd();p[i + mp].b = rd();
p[i + mp].v = rd();p[i + mp].id = i;
if(dfn[p[i + mp].a] > dfn[p[i + mp].b])swap(p[i + mp].a,p[i + mp].b);
}
solve(1,mp + mq,1,cnt);
for(int i = 1;i <= mq;++i)printf("%d\n",b[ans[i]]);
return 0;
}
In tag:
数据结构-整体二分
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡