卧薪尝胆,厚积薄发。
HNOI2015 开店
Date: Thu Aug 30 11:47:29 CST 2018
In Category:
NoCategory
Description:
一棵树上每个点有一个值
$v$
,每次询问树上所有
$v$
在
$[l,r]$
内的点到这个点的距离之和。
$1\le n \le 150000$
Solution:
动态点分治,还是维护
$sum,tofa,tot$
,但是由于有区间询问,所以每个点记一个
$vector$
,把
$vector$
中的元素按
$v$
排序,做一个后缀和,之所以是后缀和是因为可以在后面
$push\_back$
一个极大值
$upper\_bound$
不会出问题,然后每次在
$vector$
里二分一下就取得了想要的范围,二分可以用
$STL$
的
$lower\_bound$
和
$upper\_bound$
,注意
$upper\_bound$
中
$pair$
的第二个元素应设为无穷大,然后就是卡常了,首先每次不能二分八次,然后
$LCA$
用
$ST$
表求。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<vector>
#include<cstring>
using namespace std;
#define min(a,b) ((a)<(b)?(a):(b))
int n,maxy,m;
#define MAXN 150010
#define INF 0x3f3f3f3f
#define INFLL 999999999999ll
typedef long long ll;
int val[MAXN];
int w[MAXN];
bool cmp(int x,int y){return val[x] < val[y];}
struct edge
{
int to,nxt;
ll v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b,ll c)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].v = c;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
ll len[MAXN];
int rank[MAXN];
int cur = 0;
ll f[MAXN << 2][20];
void dfs(int k,int fa)
{
f[++cur][0] = len[k];rank[k] = cur;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa)continue;
len[e[i].to] = len[k] + e[i].v;
dfs(e[i].to,k);
f[++cur][0] = len[k];
}
return;
}
inline void ST()
{
for(register int k = 1;k <= 19;++k)
for(register int i = 1;i <= cur;++i)
f[i][k] = min(f[i][k - 1],f[i + (1 << (k - 1))][k - 1]);
return;
}
inline ll dis(int a,int b)
{
if(rank[a] > rank[b])swap(a,b);
register int k = log2(rank[b] - rank[a] + 1);
return len[a] + len[b] - 2 * min(f[rank[a]][k],f[rank[b] - (1 << k) + 1][k]);
}
int root,d[MAXN],size[MAXN],anc[MAXN],s;
bool v[MAXN];
void getroot(int k,int fa)
{
d[k] = 0;size[k] = 1;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to] || e[i].to == fa)continue;
getroot(e[i].to,k);
size[k] += size[e[i].to];
if(size[e[i].to] > d[k])
{
d[k] = size[e[i].to];
}
}
d[k] = max(d[k],s - size[k]);
if(d[k] < d[root])root = k;
return;
}
void divide(int k)
{
v[k] = true;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
s = size[e[i].to];root = 0;
getroot(e[i].to,0);
anc[root] = k;
divide(root);
}
return;
}
vector< pair<int,ll> > sum[MAXN],tofa[MAXN],tot[MAXN];
#define fi first
#define se second
inline void modify(int p,int v)
{
tot[p].push_back(make_pair(v,1ll));
sum[p].push_back(make_pair(v,0ll));
for(register int i = p;anc[i] != 0;i = anc[i])
{
sum[anc[i]].push_back(make_pair(v,dis(p,anc[i])));
tofa[i].push_back(make_pair(v,dis(p,anc[i])));
tot[anc[i]].push_back(make_pair(v,1ll));
}
return;
}
inline void maintain(int k)
{
tot[k].push_back(make_pair(maxy + 1,0));
for(register int i = tot[k].size() - 3;i >= 0;--i)tot[k][i].se += tot[k][i + 1].se;
sum[k].push_back(make_pair(maxy + 1,0));
for(register int i = sum[k].size() - 3;i >= 0;--i)sum[k][i].se += sum[k][i + 1].se;
tofa[k].push_back(make_pair(maxy + 1,0));
for(register int i = tofa[k].size() - 3;i >= 0;--i)tofa[k][i].se += tofa[k][i + 1].se;
return;
}
inline ll query(int k,int l,int r)
{
register int L,R;
L = lower_bound(sum[k].begin(),sum[k].end(),make_pair(l,0ll)) - sum[k].begin();
R = upper_bound(sum[k].begin(),sum[k].end(),make_pair(r,INFLL)) - sum[k].begin();
register ll res = sum[k][L].se - sum[k][R].se;
for(register int i = k;anc[i] != 0;i = anc[i])
{
register ll d = dis(k,anc[i]);
L = lower_bound(sum[anc[i]].begin(),sum[anc[i]].end(),make_pair(l,0ll)) - sum[anc[i]].begin();
R = upper_bound(sum[anc[i]].begin(),sum[anc[i]].end(),make_pair(r,INFLL)) - sum[anc[i]].begin();
res = res + (sum[anc[i]][L].se - sum[anc[i]][R].se) + (tot[anc[i]][L].se - tot[anc[i]][R].se) * d;
L = lower_bound(tofa[i].begin(),tofa[i].end(),make_pair(l,0ll)) - tofa[i].begin();
R = upper_bound(tofa[i].begin(),tofa[i].end(),make_pair(r,INFLL)) - tofa[i].begin();
res = res - (tofa[i][L].se - tofa[i][R].se) - (tot[i][L].se - tot[i][R].se) * d;
}
return res;
}
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int main()
{
n = read();m = read();maxy = read();
for(register int i = 1;i <= n;++i)val[i] = read();
register int a,b,c;
for(register int i = 1;i < n;++i)
{
a = read();b = read();c = read();
add(a,b,c);
}
dfs(1,0);ST();
root = 0;d[0] = INF;s = n;
getroot(1,0);
divide(root);
for(register int i = 1;i <= n;++i)w[i] = i;
sort(w + 1,w + 1 + n,cmp);
for(register int i = 1;i <= n;++i)modify(w[i],val[w[i]]);
for(register int i = 1;i <= n;++i)maintain(i);
register ll lastans = 0;
register int u,x,y;
for(register int i = 1;i <= m;++i)
{
u = read();a = read();b = read();
x = min((a + lastans) % maxy,(b + lastans) % maxy);
y = max((a + lastans) % maxy,(b + lastans) % maxy);
lastans = query(u,x,y);
printf("%lld\n",lastans);
}
return 0;
}
In tag:
树-动态点分治
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡