卧薪尝胆,厚积薄发。
历史研究
Date: Thu Jul 12 00:46:54 CST 2018
In Category:
NoCategory
Description:
求区间加权众数。
$1\le N \le 10^5$
Solution:
分块,先离散化,记
$cnt[i][j]$
表示从第
$i$
个块的开头开始到结尾数字
$j$
的个数,
$f[i][j]$
表示从第
$i$
个块的开头开始到位置
$j$
加权众数,这样对于每次询问时只用查询
$[l,R[belong[l]]]$
之间的数能否成为加权众数,开一个桶记录即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cstring>
using namespace std;
#define MAXN 100050
int n,q;
int siz,tot,L[MAXN],R[MAXN],belong[MAXN];
int a[MAXN],b[MAXN],s[MAXN],cur = 0;;
int cnt[333][MAXN],num[MAXN];
typedef long long ll;
ll f[333][MAXN];
bool cmp(int x,int y){return a[x] < a[y];}
stack<int> st;
int main()
{
scanf("%d%d",&n,&q);
tot = siz = sqrt(n);
for(int i = 1;i <= tot;++i)
{
L[i] = (i - 1) * siz + 1;R[i] = i * siz;
for(int k = L[i];k <= R[i];++k)
belong[k] = i;
}
if(siz * siz < n)
{
++tot;L[tot] = R[tot - 1] + 1;R[tot] = n;
for(int k = L[tot];k <= R[tot];++k)
belong[k] = tot;
}
for(int i = 1;i <= n;++i)
{
scanf("%d",&a[i]);
b[i] = i;
}
sort(b + 1,b + 1 + n,cmp);
for(int i = 1;i <= n;++i)
{
if(a[b[i]] == a[b[i - 1]])s[b[i]] = cur;
else s[b[i]] = ++cur;
}
for(int i = 1;i <= tot;++i)
{
ll now = 0;
for(int j = L[i];j <= n;++j)
{
cnt[i][s[j]]++;
now = max(now,(ll)cnt[i][s[j]] * a[j]);
f[i][j] = now;
}
}
int l,r;
ll ans;
for(int i = 1;i <= q;++i)
{
scanf("%d%d",&l,&r);
ans = 0;
if(belong[l] == belong[r])
{
for(int j = l;j <= r;++j)
{
num[s[j]]++;st.push(s[j]);
ans = max(ans,(ll)num[s[j]] * a[j]);
}
printf("%lld\n",ans);
while(!st.empty())
{
num[st.top()]--;
st.pop();
}
continue;
}
ans = f[belong[l] + 1][r];
for(int j = L[belong[r]];j <= r;++j)
{
num[s[j]]++;
st.push(s[j]);
}
for(int j = l;j <= R[belong[l]];++j)
{
num[s[j]]++;
st.push(s[j]);
ans = max(ans,(ll)(num[s[j]] + cnt[belong[l] + 1][s[j]] - cnt[belong[r]][s[j]]) * a[j]);
}
printf("%lld\n",ans);
while(!st.empty())
{
num[st.top()]--;
st.pop();
}
}
return 0;
}
In tag:
数据结构-分块
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡