卧薪尝胆,厚积薄发。
SDOI2016 储能表
Date: Wed May 30 16:05:12 CST 2018
In Category:
NoCategory
Description:
求:
$\begin{align}\biggl(\sum_{i=0}^{n-1}\sum_{j=0}^{m-1}max(0,i\end{align}$
$xor$
$j-k)\biggr)\%p$
$1\le T\le 5000$
$1\le n,m,k\le 10^{18}$
$1\le p\le 10^9$
Solution:
数位
$DP$
,转移时有三条边际线,枚举两个方向的值,异或大于等于
$k$
的边际线的才转移,记录两个值,一个
$cnt$
表示合法的个数,一个
$sum$
表示异或和,要把边界线设计在状态里不然
(据说)
会
$T$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
int testcases;
ll n,m,k,p,dv;
#define MAXL 100
int bitn[MAXL],bitm[MAXL],bitk[MAXL],lenn = 0,lenm = 0,lenk = 0;
int maxn = 0;
bool v[MAXL][2][2][2];
pair<ll,ll> f[MAXL][2][2][2];
pair<ll,ll> dfs(int pos,bool bn,bool bm,bool bk)
{
if(pos == 0)return make_pair(1ll,0ll);
if(v[pos][bn][bm][bk])return f[pos][bn][bm][bk];
pair<ll,ll> res = make_pair(0ll,0ll);
int limn = (bn ? bitn[pos] : 1),limm = (bm ? bitm[pos] : 1),limk = (bk ? bitk[pos] : 0);
for(int i = 0;i <= limn;++i)
{
for(int j = 0;j <= limm;++j)
{
if((i ^ j) >= limk)
{
pair<ll,ll> tr = dfs(pos - 1,bn && (i == limn),bm && (j == limm),bk && ((i ^ j) == limk));
res.first = (res.first + tr.first) % p;
res.second = ((res.second + tr.second) % p + ((ll)(i ^ j) * ((1ll << (pos - 1)) % p) * tr.first) % p) % p;
}
}
}
v[pos][bn][bm][bk] = true;f[pos][bn][bm][bk] = res;
return res;
}
void work()
{
memset(v,false,sizeof(v));
scanf("%lld%lld%lld%lld",&n,&m,&k,&p);--n;--m;dv = k;
lenn = 0;memset(bitn,0,sizeof(bitn));
lenm = 0;memset(bitm,0,sizeof(bitm));
lenk = 0;memset(bitk,0,sizeof(bitk));
while(n > 0){bitn[++lenn] = n & 1;n = n >> 1;}
while(m > 0){bitm[++lenm] = m & 1;m = m >> 1;}
while(k > 0){bitk[++lenk] = k & 1;k = k >> 1;}
maxn = max(lenk,max(lenn,lenm));
pair<ll,ll> ans = dfs(maxn,true,true,true);
cout << (ans.second - (ans.first * (dv % p)) % p + p) % p << endl;
return;
}
int main()
{
scanf("%d",&testcases);
for(int i = 1;i <= testcases;++i)
{
work();
}
return 0;
}
In tag:
DP-数位DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡