卧薪尝胆,厚积薄发。
HNOI2016 网络
Date: Sat Dec 15 08:54:56 CST 2018
In Category:
NoCategory
Description:
给一棵树,三种操作:
$a,b$
之间出现重要度为
$v$
的交互,删除某个交互,询问不经过某个点的交互最大的重要度。
$1\leqslant n\leqslant 2\times 10^5$
Solution:
如果知道了这题是整体二分,那么这题就可做了,每次二分判断是否有重要度
$\geqslant mid$
的经过他,这个可以用树状数组
$+dfs$
序维护树上动态差分实现链上加和单点求值即可,注意是不经过。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 200010
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int fa[MAXN],dep[MAXN],son[MAXN],top[MAXN],siz[MAXN];
void dfs1(int k,int depth)
{
dep[k] = depth;
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k])
{
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
}
return;
}
int dfn[MAXN],rnk[MAXN];
void dfs2(int k,int tp)
{
top[k] = tp;dfn[++dfn[0]] = k;rnk[k] = dfn[0];
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
return (dep[a] < dep[b] ? a : b);
}
struct query
{
int type,a,b,v;
int id;
}q[MAXN],ql[MAXN],qr[MAXN];
bool cmp_id(query a,query b){return a.id < b.id;}
int x[MAXN],tot = 0;
int lowbit(int x){return x & (-x);}
int c[MAXN];
void addv(int p,int x){if(p == 0)return;for(int i = p;i <= n;i += lowbit(i))c[i] += x;return;}
int query(int p){int res = 0;for(int i = p;i >= 1;i -= lowbit(i))res += c[i];return res;}
void change(int a,int b,int v)
{
int lca = LCA(a,b);
addv(rnk[a],v);addv(rnk[b],v);
addv(rnk[lca],-v);addv(rnk[fa[lca]],-v);
return;
}
int calc(int k)
{
return query(rnk[k] + siz[k] - 1) - query(rnk[k] - 1);
}
void solve(int l,int r,int L,int R)
{
if(L == R)
{
for(int i = l;i <= r;++i)
{
if(q[i].type == 0)q[i].b = x[L];
}
return;
}
int mid = ((L + R + 1) >> 1);
int totl = 0,totr = 0;
int cnt = 0;
for(int i = l;i <= r;++i)
{
if(q[i].type != 0)
{
if(q[i].v >= mid)
{
qr[++totr] = q[i];
change(q[i].a,q[i].b,q[i].type);
cnt += q[i].type;
}
else ql[++totl] = q[i];
}
else
{
if(cnt - calc(q[i].a) > 0)qr[++totr] = q[i];
else ql[++totl] = q[i];
}
}
for(int i = 1;i <= totr;++i)
if(qr[i].type != 0)
change(qr[i].a,qr[i].b,-qr[i].type);
int cur = l;
for(int i = 1;i <= totl;++i)q[cur++] = ql[i];
for(int i = 1;i <= totr;++i)q[cur++] = qr[i];
solve(l,l + totl - 1,L,mid - 1);
solve(l + totl,r,mid,R);
return;
}
int main()
{
scanf("%d%d",&n,&m);
int a,b;
for(int i = 1;i < n;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
dfs1(1,1);dfs2(1,1);
int opt,v;
for(int i = 1;i <= m;++i)
{
scanf("%d",&opt);
if(opt == 0)
{
scanf("%d%d%d",&a,&b,&v);
q[i].a = a;q[i].b = b;q[i].v = v;q[i].type = 1;
x[++tot] = v;
}
if(opt == 1)
{
scanf("%d",&v);
q[i].a = q[v].a;q[i].b = q[v].b;q[i].v = q[v].v;q[i].type = -1;
}
if(opt == 2)
{
scanf("%d",&q[i].a);
q[i].type = 0;
}
q[i].id = i;
}
sort(x + 1,x + 1 + tot);
tot = unique(x + 1,x + 1 + tot) - x - 1;
for(int i = 1;i <= m;++i)
{
if(q[i].type != 0)q[i].v = lower_bound(x + 1,x + 1 + tot,q[i].v) - x;
}
x[0] = -1;
solve(1,m,0,tot);
sort(q + 1,q + 1 + m,cmp_id);
for(int i = 1;i <= m;++i)if(q[i].type == 0)printf("%d\n",q[i].b);
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡