卧薪尝胆,厚积薄发。
HEOI2016/TJOI2016 字符串
Date: Mon Nov 19 20:35:33 CST 2018
In Category:
NoCategory
Description:
给一个字符串,多次询问
$s[a\sim b]$
的所有子串和
$s[c\sim d]$
的
$LCP$
的最大值。
$1\leqslant n\leqslant 10^5$
Solution:
既然是
$LCP$
,那就先把后缀数组求出来,然后每次询问先二分一个长度,然后问题就变成了和
$s[c\sim d]$
的
$LCP\geqslant mid$
的所有子串中是否有
$s[a\sim b]$
的子串,这个可以在
$height$
数组中二分出合法的左边界和右边界,问题就变成了查询这个区间中是否有在
$[a,b-mid+1]$
之间的,这个用一个主席树求就可以了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 100010
char getc()
{
register char c = getchar();
while(!isalpha(c))c = getchar();
return c;
}
char s[MAXN];
int sa[MAXN],rnk[MAXN],height[MAXN];
int t1[MAXN],t2[MAXN],c[MAXN];
inline void make_SA(int n,int m)
{
register int *x = t1,*y = t2;
register int p;
for(register int i = 1;i <= m;++i)c[i] = 0;
for(register int i = 1;i <= n;++i)++c[x[i] = s[i]];
for(register int i = 1;i <= m;++i)c[i] += c[i - 1];
for(register int i = n;i >= 1;--i)sa[c[x[i]]--] = i;
for(register int k = 1;k <= n;k = k << 1)
{
p = 0;
for(register int i = n - k + 1;i <= n;++i)y[++p] = i;
for(register int i = 1;i <= n;++i)if(sa[i] > k)y[++p] = sa[i] - k;
for(register int i = 1;i <= m;++i)c[i] = 0;
for(register int i = 1;i <= n;++i)++c[x[y[i]]];
for(register int i = 1;i <= m;++i)c[i] += c[i - 1];
for(register int i = n;i >= 1;--i)sa[c[x[y[i]]]--] = y[i];
p = 1;
swap(x,y);x[sa[1]] = 1;
for(register int i = 2;i <= n;++i)
{
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
}
if(p >= n)break;
m = p;
}
for(register int i = 1;i <= n;++i)
{
rnk[sa[i]] = i;
}
register int k = 0;
for(register int i = 1;i <= n;++i)
{
if(rnk[i] == 1)continue;
if(k)--k;
int j = sa[rnk[i] - 1];
while(i + k <= n && s[i + k] == s[j + k])++k;
height[rnk[i]] = k;
}
return;
}
struct node
{
int lc,rc;
int sum;
node(){sum = 0;}
}t[MAXN * 30];
int ptr = 0;
inline int newnode(){return ++ptr;}
int root[MAXN];
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
register int mid = ((l + r) >> 1);
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void insert(int &rt,int p,int l,int r)
{
register int k = newnode();t[k] = t[rt];rt = k;
++t[rt].sum;
if(l == r)return;
register int mid = ((l + r) >> 1);
if(p <= mid)insert(t[rt].lc,p,l,mid);
else insert(t[rt].rc,p,mid + 1,r);
return;
}
int query(int rtr,int rtl,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rtr].sum - t[rtl].sum;
register int res = 0;
register int mid = ((l + r) >> 1);
if(L <= mid)res += query(t[rtr].lc,t[rtl].lc,L,R,l,mid);
if(R > mid)res += query(t[rtr].rc,t[rtl].rc,L,R,mid + 1,r);
return res;
}
int f[MAXN][18];
int lg2[MAXN];
inline int calc(int l,int r)
{
register int len = lg2[r - l + 1];
return min(f[l][len],f[r - (1 << len) + 1][len]);
}
inline int getl(int p,int len)
{
register int l = 1,r = p,mid;
while(l < r)
{
mid = ((l + r) >> 1);
if(calc(mid + 1,p) >= len)r = mid;
else l = mid + 1;
}
return l;
}
inline int getr(int p,int len)
{
register int l = p,r = n,mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(calc(p + 1,mid) >= len)l = mid;
else r = mid - 1;
}
return l;
}
inline bool check(int len,int p,int l,int r)
{
p = rnk[p];
register int lef = getl(p,len),rig = getr(p,len);
return query(root[rig],root[lef - 1],l,r - len + 1,1,n);
}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= n;++i)s[i] = getc();
for(register int i = 2;i <= n;++i)lg2[i] = lg2[i >> 1] + 1;
make_SA(n,256);
build(root[0],1,n);
for(register int i = 1;i <= n;++i)
{
root[i] = root[i - 1];
insert(root[i],sa[i],1,n);
}
for(register int i = 1;i <= n;++i)f[i][0] = height[i];
for(register int k = 1;k <= 17;++k)
for(register int i = 1;i <= n - (1 << k) + 1;++i)
f[i][k] = min(f[i][k - 1],f[i + (1 << (k - 1))][k - 1]);
register int a,b,x,y;
for(register int i = 1;i <= m;++i)
{
a = rd();b = rd();x = rd();y = rd();
register int l = 0,r = min(b - a + 1,y - x + 1),mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(check(mid,x,a,b))l = mid;
else r = mid - 1;
}
printf("%d\n",l);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡