卧薪尝胆,厚积薄发。
ZJOI2016 大森林
Date: Wed Jan 16 22:00:58 CST 2019
In Category:
NoCategory
Description:
有
$n$
棵树排成一排,三种操作:
$0$
$l$
$r$
表示第
$l$
到第
$r$
棵树的生长节点下面长出一个子节点。
$1$
$l$
$r$
$x$
表示第
$l$
棵树到第
$r$
棵树的生长节点改到标号为
$x$
的节点。
$2$
$x$
$u$
$v$
表示询问第
$x$
棵树中
$u$
到
$v$
的距离。
$1\leqslant n\leqslant10^5,1\leqslant m\leqslant 2\times 10^5$
Solution:
首先一个最暴力的想法是每棵树维护一个
$LCT$
,然后在上面做,树上求距离还可以用树上差分。
但是这样显然是不行的,考虑将操作离线,每次维护当前
$LCT$
的形态,那么发现一次
$1$
操作只不过会把这一段区间新长出来的点移动到
$x$
下面,那么我们可以建立一个虚点,然后到
$r$
的时候再把虚点还有所有接在它上的点都接回去,然后就可以维护了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 300010
struct node
{
int c[2],fa;
int val,sum;
}t[MAXN];
int ptr = 0;
int num[MAXN],realtot = 0;
int newnode(int w){++ptr;t[ptr].val = t[ptr].sum = w;return ptr;}
void maintain(int rt){t[rt].sum = t[t[rt].c[0]].sum + t[t[rt].c[1]].sum + t[rt].val;return;}
bool isroot(int rt){return (t[t[rt].fa].c[0] != rt && t[t[rt].fa].c[1] != rt);}
int id(int rt){return (t[t[rt].fa].c[0] == rt ? 0 : 1);}
void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
void rotate(int x)
{
int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
if(!isroot(y))t[z].c[fy] = x;
t[x].fa = z;
connect(t[x].c[fx ^ 1],y,fx);
connect(y,x,fx ^ 1);
maintain(y);maintain(x);
return;
}
void splay(int x)
{
while(!isroot(x))
{
int y = t[x].fa;
if(isroot(y)){rotate(x);break;}
else if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
return;
}
int access(int k){int i = 0;for(;k;i = k,k = t[k].fa){splay(k);t[k].c[1] = i;maintain(k);}return i;}
void link(int k,int f){access(k);splay(k);t[k].fa = f;return;}
void cut(int k){access(k);splay(k);t[t[k].c[0]].fa = 0;t[k].c[0] = 0;maintain(k);return;}
struct option
{
int pos,tim,type,a,b,ans;
//type 1 : cut a from his father,link a to b
//type 2 : query dist between a and b
//opt 1 : link a to b at pos l,cut a from his father at pos r + 1
//opt 2 : link virtual point v to cur growpoint
// link virtual point v to new grwopoint at pos l
// link virtual point v to pre growpoint at at pos r + 1
//opt 3 : query dist between a and b
}s[MAXN << 1];
int optcnt = 0;
bool cmp_option(option a,option b){return (a.pos == b.pos ? a.tim < b.tim : a.pos < b.pos);}
bool cmp_tim(option a,option b){return a.tim < b.tim;}
int lef[MAXN],rig[MAXN];
int main()
{
scanf("%d%d",&n,&m);
int opt,l,r,x,u,v;
num[++realtot] = newnode(1);
newnode(0);link(2,1);
lef[1] = 1;rig[1] = n;
int growpoint = 2;
for(int i = 1;i <= m;++i)
{
scanf("%d",&opt);
if(opt == 0)
{
scanf("%d%d",&l,&r);
num[++realtot] = newnode(1);
lef[realtot] = l;rig[realtot] = r;
s[++optcnt] = (option){l,i,1,num[realtot],growpoint};
s[++optcnt] = (option){r + 1,i,1,num[realtot],0};
}
if(opt == 1)
{
scanf("%d%d%d",&l,&r,&x);
l = max(l,lef[x]);r = min(r,rig[x]);
if(l > r)continue;
int v = newnode(0);
link(v,growpoint);
s[++optcnt] = (option){l,i,1,v,num[x]};
s[++optcnt] = (option){r + 1,i,1,v,growpoint};
growpoint = v;
}
if(opt == 2)
{
scanf("%d%d%d",&x,&u,&v);
s[++optcnt] = (option){x,i + m,2,num[u],num[v]};
}
}
sort(s + 1,s + 1 + optcnt,cmp_option);
for(int i = 1;i <= optcnt;++i)
{
if(s[i].type == 1)
{
cut(s[i].a);link(s[i].a,s[i].b);
}
else
{
int res = 0;
access(s[i].a);splay(s[i].a);res += t[s[i].a].sum;
int lca = access(s[i].b);splay(s[i].b);res += t[s[i].b].sum;
access(lca);splay(lca);res -= 2 * t[lca].sum;
s[i].ans = res;
}
}
sort(s + 1,s + 1 + optcnt,cmp_tim);
for(int i = 1;i <= optcnt;++i)
{
if(s[i].type == 2)printf("%d\n",s[i].ans);
}
return 0;
}
In tag:
数据结构-LCT
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡