卧薪尝胆,厚积薄发。
普通计算姬
Date: Sun Jul 15 19:11:13 CST 2018
In Category:
NoCategory
Description:
给定一棵
$n$
个节点的带权树,节点编号为
$1$
到
$n$
,以
$root$
为根,设
$sum[p]$
表示以点
$p$
为根的这棵子树中所有节点的权值和。两种操作:
$1$
给定两个整数
$u,v$
,修改点
$u$
的权值为
$v$
。
$2$
给定两个整数
$l,r$
,计算
$sum[l]+sum[l+1]+\dots+sum[r-1]+sum[r]$
$N\le10^5$
Solution:
树状数组维护
$dfs$
序即可求子树和,每次修改是单点修改,
$\sum sum[p]$
没有什么特殊性质,考虑分块,大的整块加,散的树状数组。
维护
$f[i][j]$
表示
$i$
这个块内,有多少点是
$j$
的祖先(包含j自身)。这个可以
$dfs$
开一个桶记录每个块的值。修改时加
$f[k][x]\times (y-lastval[x])$
查询的复杂度:
$O(Q\sqrt N logN)$
修改的复杂度:
$O(Q\sqrt N)$
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 100010
typedef unsigned long long ll;
ll val[MAXN];
int root;
//edge
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
++edgenum;e[edgenum].to = b;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
//block
#define MAXB 333
int cnt;
ll sum[MAXB],tag[MAXB];
int L[MAXB],R[MAXB],belong[MAXN];
void build(int l,int r,int k)
{
L[k] = l;R[k] = r;
for(int i = l;i <= r;++i)belong[i] = k;
return;
}
//prework
int f[MAXB][MAXN];
int basket[MAXB];
bool vis[MAXN];
ll s[MAXN];
int rank[MAXN],cur = 0,siz[MAXN];
void dfs(int k)
{
rank[k] = ++cur;
s[k] = val[k];siz[k] = 1;
vis[k] = true;
basket[belong[k]]++;
for(int i = 1;i <= cnt;++i)f[i][k] = basket[i];
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(!vis[e[i].to])
{
dfs(e[i].to);
s[k] += s[e[i].to];
siz[k] += siz[e[i].to];
}
}
basket[belong[k]]--;
return;
}
//BIT
ll c[MAXN];
int lowbit(int x){return x&(-x);}
void inc(int p,ll k){for(int i = p;i <= n;i += lowbit(i))c[i] += k;return;}
ll query(int p){ll res = 0;for(int i = p;i >= 1;i -= lowbit(i))res += c[i];return res;}
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)val[i] = (ll)read();
int a,b;
for(int i = 1;i <= n;++i)
{
a = read();b = read();
if(a == 0)root = b;
else add(a,b);
}
cnt = sqrt(n);
for(int i = 1;i <= cnt;++i)build((i - 1) * cnt + 1,i * cnt,i);
if(cnt * cnt < n){build(R[cnt] + 1,n,cnt + 1);++cnt;}
memset(vis,false,sizeof(vis));
dfs(root);
for(int i = 1;i <= n;++i)
{
sum[belong[i]] += s[i];
inc(rank[i],val[i]);
}
int type,x,y;
for(int i = 1;i <= m;++i)
{
type = read();x = read();y = read();
if(type == 1)
{
inc(rank[x],(ll)y - val[x]);
for(int k = 1;k <= cnt;++k)
{
tag[k] += (ll)f[k][x] * ((ll)y - val[x]);
}
val[x] = (ll)y;
}
else
{
if(belong[x] == belong[y])
{
ll ans = 0;
for(int k = x;k <= y;++k)ans += query(rank[k] + siz[k] - 1) - query(rank[k] - 1);
cout << ans << endl;
}
else
{
ll ans = 0;
for(int k = belong[x] + 1;k <= belong[y] - 1;++k)
{
ans += sum[k] + tag[k];
}
for(int k = x;k <= R[belong[x]];++k)ans += query(rank[k] + siz[k] - 1) - query(rank[k] - 1);
for(int k = L[belong[y]];k <= y;++k)ans += query(rank[k] + siz[k] - 1) - query(rank[k] - 1);
cout << ans << endl;
}
}
}
return 0;
}
In tag:
数据结构-分块
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡