卧薪尝胆,厚积薄发。
ZJOI2017 仙人掌
Date: Tue Apr 02 10:26:33 CST 2019
In Category:
NoCategory
Description:
给一个无向连通图,问有几种加边的方案最后形成了一棵仙人掌。
$1\leqslant n\leqslant 5\times 10^5$
Solution:
首先随便求出来一个生成树,然后把生成树上环上的边都删掉,那么最后会形成一个森林,那么思考一下就会发现树之间不会有边,那么可以对每棵树分别计算最后乘起来,对于一棵树的情况,我们可以把一条非树边还是看成树上的一段路径,那么问题就转换成了给一棵树,要求在树上选一些边不相交的链的方案数,考虑树形
$DP$
:
$f[i]$
表示子树
$i$
不向上扩展的方案数,
$g[i]$
表示向上扩展,发现这样不好转移于是再设一个
$h[i]$
表示把
$i$
个点两两配对的方案数,先预处理
$h$
:
$$
h[i]=h[i-1]+(i-1)\times h[i-2]
$$
然后是
$f$
:
$$
f[k]=h[|ch|]\times \prod_{i\in ch}g[i]
$$
最后是
$g$
:
$$
g[k]=f[k]+ch\times h[|ch|-1]\times \prod_{i\in ch}g[i]
$$
妙妙妙。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 1000010
struct edges
{
int u,v;
}es[MAXN];
struct edge
{
int to,nxt,id;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,int id)
{
e[++edgenum] = (edge){b,lin[a],id};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b],id};lin[b] = edgenum;
return;
}
bool vis[MAXN];
int fa[MAXN];
bool tagp[MAXN],tage[MAXN];
vector<int> t[MAXN];
int ind[MAXN];
void addt(int a,int b)
{//cout << a << " => " << b << endl;
++ind[b];
t[a].push_back(b);
return;
}
bool prework(int k)
{
vis[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa[k])continue;
if(tage[e[i].id])continue;
if(vis[e[i].to])
{
for(int cur = k;cur != e[i].to;cur = fa[cur])
{
if(tagp[cur])return false;
tagp[cur] = true;
}
tage[e[i].id] = true;
continue;
}//cout << k << " -> " << e[i].to << endl;
fa[e[i].to] = k;
if(!prework(e[i].to))return false;
}
return true;
}
#define MOD 998244353
int f[MAXN],h[MAXN],g[MAXN];
int dp(int k,int fa)
{
vis[k] = true;
int sum = 1,cnt = 0;
for(vector<int>::iterator it = t[k].begin();it != t[k].end();++it)
{
if(*it == fa)continue;
dp(*it,k);
sum = 1ll * sum * g[*it] % MOD;
++cnt;
}
f[k] = 1ll * h[cnt] * sum % MOD;
g[k] = (f[k] + 1ll * cnt * h[cnt - 1] % MOD * sum % MOD) % MOD;
return f[k];
}
void work()
{
edgenum = 0;
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)ind[i] = lin[i] = fa[i] = 0;
for(int i = 1;i <= n;++i)vis[i] = tagp[i] = false;
for(int i = 1;i <= m;++i)tage[i] = false;
for(int i = 1;i <= m;++i)add(es[i].u = rd(),es[i].v = rd(),i);
for(int i = 1;i <= n;++i)t[i].clear();
h[0] = 1;h[1] = 1;
for(int i = 2;i <= n;++i)h[i] = (h[i - 1] + 1ll * (i - 1) * h[i - 2] % MOD) % MOD;
if(!prework(1))
{
puts("0");
return;
}
for(int k = 2;k <= n;++k)if(tagp[k])
{
for(int i = lin[k];i != 0;i = e[i].nxt)if(e[i].to == fa[k])tage[e[i].id] = true;
}
for(int i = 1;i <= n;++i)if(fa[i] != 0 && !tagp[i])addt(fa[i],i);
int ans = 1;
for(int i = 1;i <= n;++i)vis[i] = false;
for(int i = 1;i <= n;++i)if(!vis[i] && ind[i] == 0)ans = 1ll * ans * dp(i,0) % MOD;
printf("%d\n",ans);
return;
}
int main()
{
int testcases = rd();
while(testcases--)work();
return 0;
}
In tag:
DP-树形DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡