卧薪尝胆,厚积薄发。
SDOI2017 新生舞会
Date: Sat Sep 29 15:19:35 CST 2018
In Category:
NoCategory
Description:
给出
$a[i][j]$
和
$b[i][j]$
,把所有两两配对最小化
$\frac{a[p11][p12]+a[p21][p22]+\cdots+a[pk1][pk2]}{b[p11][p12]+b[p21][p22]+\cdots+b[pk1][pk2]}$
。
$1\leqslant n \leqslant 100$
Solution:
$01$
分数规划,先二分一个
$k$
,然后设
$s[i][j]=a[i][j]-k\times b[i][j]$
,按
$s[i][j]$
求二分图最大权匹配判一下是否大于零,如果小于零,说明大了,否则说明小了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
int n;
#define MAXN 210
int a[MAXN][MAXN],b[MAXN][MAXN];
const double eps = 1e-8;
struct edge
{
int to,nxt,f;
double c;
}e[MAXN * MAXN + MAXN * 2];
int edgenum = 0;
int lin[MAXN];
void add(int a,int b,int f,double c)
{
e[edgenum].to = b;e[edgenum].f = f;e[edgenum].c = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;++edgenum;
e[edgenum].to = a;e[edgenum].f = 0;e[edgenum].c = -c;e[edgenum].nxt = lin[b];lin[b] = edgenum;++edgenum;
return;
}
int s,t;
void build(double k)
{
s = 2 * n + 1;t = s + 1;
memset(lin,-1,sizeof(lin));edgenum = 0;
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
add(i,j + n,1,a[i][j] - k * b[i][j]);
for(int i = 1;i <= n;++i)
add(s,i,1,0),add(i + n,t,1,0);
return;
}
double d[MAXN];
int pre[MAXN],rate[MAXN];
bool inq[MAXN];
#define INF 0x3f3f3f3f
bool equal(double a,double b){return fabs(a - b) < eps;}
bool SPFA()
{
rate[s] = INF;
for(int i = 1;i <= t;++i)d[i] = -1000000000000;
queue<int> q;q.push(s);d[s] = 0;
while(!q.empty())
{
int k = q.front();q.pop();
inq[k] = false;
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(d[e[i].to] < d[k] + e[i].c && e[i].f)
{
d[e[i].to] = d[k] + e[i].c;
pre[e[i].to] = i;rate[e[i].to] = min(rate[k],e[i].f);
if(!inq[e[i].to])
{
inq[e[i].to] = true;
q.push(e[i].to);
}
}
}
}//cout << d[t] << endl;
return !equal(d[t],-1000000000000);
}
double flow()
{
for(int i = t;i != s;i = e[pre[i] ^ 1].to)
{
e[pre[i]].f -= rate[t];
e[pre[i] ^ 1].f += rate[t];
}
return d[t] * rate[t];
}
double EK()
{
double ans = 0;
while(SPFA())ans += flow();
return ans;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
scanf("%d",&a[i][j]);
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
scanf("%d",&b[i][j]);
double l = 0,r = 10000000,mid;
while(r - l > eps)
{
mid = (l + r) / 2;
build(mid);
if(EK() < 0)r = mid;
else l = mid;
}
printf("%.6lf\n",l);
return 0;
}
In tag:
算法-01分数规划 图论-最小费用最大流
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡