卧薪尝胆,厚积薄发。
HNOI2017 单旋
Date: Thu Nov 22 17:36:17 CST 2018
In Category:
NoCategory
Description:
定义
$spaly$
为单旋的
$splay$
,维护一个
$spaly$
,支持插入,把最小值旋到根,把最大值旋到根,删除根,输出操作位置的深度。
$1\leqslant n\leqslant 10^5$
Solution:
首先直接按照题意单旋模拟肯定随便就卡成
$O(n^2)$
了,考虑有什么更好的做法,手玩一下会发现实际上单旋最小值影响的点非常小,那么就可以用一个类似
$splay$
的东西来模拟它,插入的时候有一个性质,就是一定是插入在前驱的右儿子或者后继的左儿子,并且一定只有一个位置是空的,所以插在对应位置就好了,单旋最小值的话就是胡乱接一下,注意根节点的更新,统计深度可以用线段树,因为每次都是整个子树深度增加或减少,找到对应的区间操作就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
#define MAXN 100010
int n;
set<int> st;
struct opt
{
int type,x;
}o[MAXN];
int b[MAXN],tot = 0;
namespace Seg
{
struct node
{
int lc,rc;
int tag;
node(){tag = 0;}
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void pushdown(int rt)
{
t[t[rt].lc].tag += t[rt].tag;
t[t[rt].rc].tag += t[rt].tag;
t[rt].tag = 0;
return;
}
void add(int rt,int L,int R,int k,int l,int r)
{
if(L <= l && r <= R)
{
t[rt].tag += k;
return;
}
pushdown(rt);
if(L <= mid)add(t[rt].lc,L,R,k,l,mid);
if(R > mid)add(t[rt].rc,L,R,k,mid + 1,r);
return;
}
void set(int rt,int p,int k,int l,int r)
{
if(l == r)
{
t[rt].tag = k;
return;
}
pushdown(rt);
if(p <= mid)set(t[rt].lc,p,k,l,mid);
else set(t[rt].rc,p,k,mid + 1,r);
return;
}
int query(int rt,int p,int l,int r)
{
if(l == r)return t[rt].tag;
pushdown(rt);
if(p <= mid)return query(t[rt].lc,p,l,mid);
else return query(t[rt].rc,p,mid + 1,r);
}
}
namespace Spaly
{
struct node
{
int c[2],fa;
node(){c[0] = c[1] = fa = 0;}
}t[MAXN];
int ptr = 0;
int newnode(){return ++ptr;}
int root = 0;
void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
int insert(int k)
{
st.insert(k);
if(root == 0)
{
root = k;
Seg::set(Seg::root,k,1,1,tot);
return 1;
}
set<int>::iterator it = st.find(k);
int p;
if(it == st.begin())p = *(++it);
else
{
set<int>::iterator pr = it;--pr;
if(t[*pr].c[1] != 0)p = *(++it);
else p = *pr;
}
if(k > p)connect(k,p,1);
else connect(k,p,0);
int depk = Seg::query(Seg::root,p,1,tot) + 1;
Seg::set(Seg::root,k,depk,1,tot);
return depk;
}
int calcmin()
{
int p = *(st.begin());
if(p == root)return 1;
int res = Seg::query(Seg::root,p,1,tot);
int f = t[p].fa;
t[p].fa = 0;
connect(t[p].c[1],f,0);
Seg::add(Seg::root,f,tot,1,1,tot);
connect(root,p,1);
root = p;
Seg::set(Seg::root,p,1,1,tot);
return res;
}
int calcmax()
{
int p = *(st.rbegin());
if(p == root)return 1;
int res = Seg::query(Seg::root,p,1,tot);
int f = t[p].fa;
t[p].fa = 0;
connect(t[p].c[0],f,1);
Seg::add(Seg::root,1,f,1,1,tot);
connect(root,p,0);
root = p;
Seg::set(Seg::root,p,1,1,tot);
return res;
}
void removeroot()
{
Seg::add(Seg::root,1,tot,-1,1,tot);
st.erase(root);
Seg::set(Seg::root,root,0,1,tot);
root = t[root].c[0] + t[root].c[1];
t[root].fa = 0;
return;
}
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)
{
o[i].type = rd();
if(o[i].type == 1)
{
o[i].x = rd();
b[++tot] = o[i].x;
}
}
sort(b + 1,b + 1 + tot);
for(int i = 1;i <= n;++i)
{
if(o[i].type == 1)o[i].x = lower_bound(b + 1,b + 1 + tot,o[i].x) - b;
}
Seg::build(Seg::root,1,tot);
for(int i = 1;i <= n;++i)
{
if(o[i].type == 1)printf("%d\n",Spaly::insert(o[i].x));
if(o[i].type == 2)printf("%d\n",Spaly::calcmin());
if(o[i].type == 3)printf("%d\n",Spaly::calcmax());
if(o[i].type == 4)printf("%d\n",Spaly::calcmin());
if(o[i].type == 5)printf("%d\n",Spaly::calcmax());
if(o[i].type == 4 || o[i].type == 5)Spaly::removeroot();
}
return 0;
}
In tag:
数据结构-线段树 数据结构-splay
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡