卧薪尝胆,厚积薄发。
JSOI2016 飞机调度
Date: Thu Sep 27 19:07:31 CST 2018 In Category: NoCategory

Description:

有若干航线,每条航线从 $A$ 到 $B$ 在 $D$ 时刻出发,给出从每个点到另一个点的最短路,在机场中转需要加油,问最少需要多少飞机。
$1\leqslant n\leqslant500$

Solution:

先用 $floyed$ 预处理出两两点最短路,然后把航线看成点,如果可以有一架飞机在飞完 $a$ 后还来得及飞 $b$ ,那么就在他们之间连一条边,这样连出来一定是一个 $\text{DAG}$ ,问题就变成了最小路径覆盖,拆点二分图求最大匹配即可。

Code:


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 510
int maintain_time[MAXN];
int dis[MAXN][MAXN],dist[MAXN][MAXN];
int x[MAXN],y[MAXN],d[MAXN];
int s,t;
struct edge
{
int to,nxt,f;
}e[MAXN * 2 * 2 + MAXN * MAXN * 2];
int edgenum = 0;
int lin[MAXN << 1];
void add(int a,int b,int f)
{
e[edgenum].to = b;e[edgenum].f = f;e[edgenum].nxt = lin[a];lin[a] = edgenum;++edgenum;
e[edgenum].to = a;e[edgenum].f = 0;e[edgenum].nxt = lin[b];lin[b] = edgenum;++edgenum;
return;
}
int ch[MAXN << 1];
bool BFS()
{
memset(ch,-1,sizeof(ch));ch[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != -1;i = e[i].nxt)
{
if(ch[e[i].to] == -1 && e[i].f)
{
ch[e[i].to] = ch[k] + 1;
q.push(e[i].to);
}
}
}
return (ch[t] != -1);
}
int flow(int k,int f)
{
if(k == t)return f;
int r = 0;
for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
{
if(ch[e[i].to] == ch[k] + 1 && e[i].f)
{
int l = flow(e[i].to,min(e[i].f,f - r));
e[i].f -= l;r += l;e[i ^ 1].f += l;
}
}
if(r == 0)ch[k] = -1;
return r;
}
#define INF 0x3f3f3f3f
int dinic()
{
int ans = 0,r;
while(BFS())while(r = flow(s,INF))ans += r;
return ans;
}
int main()
{
memset(lin,-1,sizeof(lin));
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)scanf("%d",&maintain_time[i]);
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
scanf("%d",&dis[i][j]);dist[i][j] = dis[i][j];
if(i != j)dis[i][j] += maintain_time[j];
}
}
for(int k = 1;k <= n;++k)
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
dis[i][j] = min(dis[i][j],dis[i][k] + dis[k][j]);
s = 0,t = 1;
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&x[i],&y[i],&d[i]);
add(s,i * 2 + 1,1);add(i * 2 + 2,t,1);
}
for(int i = 1;i <= m;++i)
{
for(int j = 1;j <= m;++j)
{
if(i == j)continue;
if(d[i] + dist[x[i]][y[i]] + maintain_time[y[i]] + dis[y[i]][x[j]] <= d[j])
{
add(i * 2 + 1,j * 2 + 2,1);
}
}
}
cout << m - dinic() << endl;
return 0;
}
Copyright © 2020 wjh15101051
ღゝ◡╹)ノ♡