卧薪尝胆,厚积薄发。
六省联考2017 组合数问题
Date: Fri Sep 07 20:00:54 CST 2018
In Category:
NoCategory
Description:
求
$\begin{align}\sum_{i=0}^{\infty}C^{ik+r}_{nk}\%\ p\end{align}$
$1\le n \le 10^9,0 \le r < k \le 50$
Solution:
式子的实际意义是在
$nk$
个物品里面选出的数的个数
$\%k=r$
的方案数,设其为
$F[nk][r]$
$F[i][j]=F[i-1][j]+F[i-1][(j-1-1+k)\%k+1]$
这个转移的效果就是把整个矩阵循环移一位再加到原来的矩阵中,不看实际意义直接构造递推也可以。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,p,w,r;
#define MAXK 51
struct matrix
{
ll m[MAXK][MAXK];
matrix(){memset(m,0,sizeof(m));}
friend matrix operator * (matrix a,matrix b)
{
matrix c;
for(int i = 1;i <= w;++i)
for(int j = 1;j <= w;++j)
for(int k = 1;k <= w;++k)
c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j] % p) % p;
return c;
}
friend matrix operator ^ (matrix a,ll b)
{
matrix res = a;--b;
while(b > 0)
{
if(b & 1)res = res * a;
a = a * a;
b = b >> 1;
}
return res;
}
}f;
int main()
{
scanf("%lld%lld%lld%lld",&n,&p,&w,&r);
for(ll i = 1;i <= w;++i)
{
f.m[i][i]++;
f.m[(i - 1 - 1 + w) % w + 1][i]++;
}
f = f ^ (n * w);
cout << f.m[1][r + 1] << endl;
return 0;
}
In tag:
DP-矩阵加速
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡