卧薪尝胆,厚积薄发。
TJOI2017 可乐
Date: Fri Sep 07 21:02:16 CST 2018
In Category:
NoCategory
Description:
一个机器人每时刻有三种行为:停留,走到图上相邻的城市,自爆,问行为方案数。
$1\le n \le 30,1\le m \le 100,1\le time\le 10^6$
Solution:
新建一个
$n+1$
代表自爆,连一个自环,这样自爆后对答案的贡献只能是一,停留也连一个自环,在邻接矩阵上做矩阵快速幂即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,t;
#define MAXN 50
#define MOD 2017
struct matrix
{
int m[MAXN][MAXN];
matrix(){memset(m,0,sizeof(m));}
friend matrix operator * (matrix a,matrix b)
{
matrix c;
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
for(int k = 1;k <= n;++k)
c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j] % MOD) % MOD;
return c;
}
friend matrix operator ^ (matrix a,int b)
{
matrix res = a;--b;
while(b > 0)
{
if(b & 1)res = res * a;
a = a * a;
b = b >> 1;
}
return res;
}
}g;
int main()
{
scanf("%d%d",&n,&m);
int a,b;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&a,&b);
g.m[a][b] = g.m[b][a] = 1;
}
scanf("%d",&t);
for(int i = 1;i <= n;++i)g.m[i][n + 1] = 1;
++n;
for(int i = 1;i <= n;++i)g.m[i][i] = 1;
g = g ^ t;
int ans = 0;
for(int i = 1;i <= n;++i)ans = (ans + g.m[1][i]) % MOD;
cout << ans << endl;
return 0;
}
In tag:
DP-矩阵加速
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡