卧薪尝胆,厚积薄发。
膜法师
Date: Wed Oct 10 14:04:56 CST 2018
In Category:
NoCategory
Description:
求出所有满足
$i<j<k$
且
$a_i<a_j<a_k$
的
$a_i\times a_j\times a_k$
的和。
$1\leqslant n\leqslant 300000$
Solution:
先用树状数组统计一下每个
$a_j$
的
$a_i\times a_j$
,然后再统计一遍就好了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n;
#define MAXN 300010
int a[MAXN];
int s[MAXN];
int v[MAXN];
bool cmp(int x,int y){return a[x] < a[y];}
int tot = 0;
int lowbit(int x){return x & (-x);}
#define MOD 19260817
long long c[MAXN];
void add(int p,long long x){for(int i = p;i <= tot;i += lowbit(i))c[i] = (c[i] + x) % MOD;return;}
long long query(int p){long long res = 0;for(int i = p;i >= 1;i -= lowbit(i))res = (res + c[i]) % MOD;return res;}
long long f[MAXN],g[MAXN];
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)
{
scanf("%d",&a[i]);
s[i] = i;
}
sort(s + 1,s + 1 + n,cmp);
for(int i = 1;i <= n;++i)
{
if(i == 1 || a[s[i]] != a[s[i - 1]])
v[s[i]] = ++tot;
else v[s[i]] = tot;
}
for(int i = 1;i <= n;++i)
{
f[i] = a[i] * query(v[i] - 1) % MOD;
add(v[i],a[i]);
}
memset(c,0,sizeof(c));
int ans = 0;
for(int i = 1;i <= n;++i)
{
g[i] = a[i] * query(v[i] - 1) % MOD;
add(v[i],f[i]);
ans = (ans + g[i]) % MOD;
}
cout << ans << endl;
return 0;
}
In tag:
数据结构-树状数组
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡