卧薪尝胆,厚积薄发。
CTSC2016 时空旅行
Date: Sun Jan 27 08:01:56 CST 2019
In Category:
NoCategory
Description:
你需要维护若干个版本的集合,每个集合元素是
$(x,v)$
,每次可以扩展一个版本,扩展内容为加一个新元素或删除一个已有元素,每次询问一个
$x_0$
,要你在给定版本
$i$
的集合中找出
$(x_i,v_i)$
使得
$(x_i−x_0)^2+v_i$
最小。
$1\leqslant n\leqslant 10^6$
Solution:
首先化式子:
$$
f_i=(x_i-x_0)^2+v_i=x_i^2-2x_ix_0+x_0^2+v_i
$$
显然是一个一次函数的形式(把
$x_0$
看成自变量,
$f_i$
看成因变量),那么我们就可以维护凸包来解决他,类似膜法那道题的做法,我们可以用线段树分治,这样就不用删除凸包中的点了,然后每次就在这个点到线段树根的所有凸包上查询即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
typedef long long ll;
inline ll rd()
{
register ll res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
#define MAXN 500010
struct planet
{
ll x,c;
}p[MAXN];
struct edge
{
int to,nxt;
}e[MAXN];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
return;
}
struct option
{
int tp,pos,id;
}o[MAXN];
int tot = 0;
int dfn[MAXN],rnk[MAXN],siz[MAXN];
void dfs(int k)
{
dfn[++dfn[0]] = k;rnk[k] = dfn[0];
siz[k] = 1;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
dfs(e[i].to);
siz[k] += siz[e[i].to];
}
return;
}
struct node
{
int lc,rc;
vector< pair<ll,ll> > v;
}t[MAXN << 1];
int ptr = 0;
inline int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
vector<int> s[MAXN];
bool cmp_pos(int a,int b){return abs(a) < abs(b);}
int diff[MAXN];
void add(int rt,int L,int R,pair<ll,ll> p,int l,int r)
{
if(L <= l && r <= R)
{
t[rt].v.push_back(p);
return;
}
if(L <= mid)add(t[rt].lc,L,R,p,l,mid);
if(R > mid)add(t[rt].rc,L,R,p,mid + 1,r);
return;
}
inline double slope(pair<ll,ll> a,pair<ll,ll> b)
{
return double(a.second - b.second) / double(a.first - b.first);
}
pair<ll,ll> stack[MAXN];
int top = 0;
#define fi first
#define se second
inline void calc(int rt,int l,int r)
{
sort(t[rt].v.begin(),t[rt].v.end());
int p = -1,s = t[rt].v.size();
for(int i = 0;i < s;++i)
{
if(i == 0 || t[rt].v[i].fi != t[rt].v[p].fi)t[rt].v[++p] = t[rt].v[i];
else if(t[rt].v[i].fi == t[rt].v[p].fi)t[rt].v[p].se = min(t[rt].v[p].se,t[rt].v[i].se);
}
t[rt].v.resize(p + 1);
top = 0;
for(register vector< pair<ll,ll> >::iterator it = t[rt].v.begin();it != t[rt].v.end();++it)
{
while(top >= 2 && slope(stack[top - 1],stack[top]) >= slope(stack[top],*it))--top;
stack[++top] = *it;
}
t[rt].v.clear();
for(register int i = 1;i <= top;++i)t[rt].v.push_back(stack[i]);
t[rt].v.push_back(make_pair(stack[top].first + 1,0x3f3f3f3f3f3f3f3f));
if(l == r)return;
calc(t[rt].lc,l,mid);
calc(t[rt].rc,mid + 1,r);
return;
}
inline ll query(int rt,ll x)
{
register int l = 0,r = t[rt].v.size() - 2,mi;
register ll res = 0x3f3f3f3f3f3f3f3f;
while(l < r)
{
mi = ((l + r) >> 1);
if(slope(t[rt].v[mi],t[rt].v[mi + 1]) >= 2 * x)r = mid;
else l = mid + 1;
}
return 1ll * x * x - 2 * t[rt].v[l].first * x + t[rt].v[l].second;
}
ll query(int rt,int p,ll x,int l,int r)
{
register ll res = query(rt,x);
if(l == r)return res;
if(p <= mid)res = min(res,query(t[rt].lc,p,x,l,mid));
else res = min(res,query(t[rt].rc,p,x,mid + 1,r));
return res;
}
int main()
{
scanf("%d%d%lld",&n,&m,&p[1].c);
p[1].x = 0;
register int tp,fr,id;
ll x,y,z,c;
o[++tot] = (option){0,1,1};
for(register int i = 2;i <= n;++i)
{
tp = rd();
if(tp == 0)
{
fr = rd();id = rd();x = rd();y = rd();z = rd();c = rd();
++fr;++id;add(fr,i);
o[++tot] = (option){0,i,id};
p[id].x = x;p[id].c = c;
}
if(tp == 1)
{
fr = rd();id = rd();
++fr;++id;add(fr,i);
o[++tot] = (option){1,i,id};
}
}
dfs(1);
build(root,1,n);
for(register int i = 1;i <= tot;++i)
{
if(o[i].tp == 0)
{
register int p = o[i].pos;
register int id = o[i].id;
s[id].push_back(rnk[p]);
s[id].push_back(-(rnk[p] + siz[p]));
}
else
{
register int p = o[i].pos;
register int id = o[i].id;
s[id].push_back(-rnk[p]);
s[id].push_back(rnk[p] + siz[p]);
}
}
for(register int i = 1;i <= n;++i)
{
if(s[i].size() == 0)continue;
sort(s[i].begin(),s[i].end(),cmp_pos);
for(register vector<int>::iterator it = s[i].begin();it != s[i].end();++it)
diff[abs(*it)] += (*it > 0 ? 1 : -1);
register int last = 0;
for(register vector<int>::iterator it = s[i].begin();it != s[i].end();++it)
{
if(diff[abs(*it)] == 0)continue;
if(*it > 0)last = *it,diff[*it] = 0;
else add(root,last,abs(*it) - 1,make_pair(p[i].x,p[i].x * p[i].x + p[i].c),1,n),diff[abs(*it)] = 0;
}
}
calc(root,1,n);
register int pos;
register ll x_0;
for(register int i = 1;i <= m;++i)
{
pos = rd();x_0 = rd();++pos;
pos = rnk[pos];
printf("%lld\n",query(root,pos,x_0,1,n));
}
return 0;
}
In tag:
数据结构-线段树分治
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡