卧薪尝胆,厚积薄发。
BJOI2018 链上二次求和
Date: Wed Feb 27 11:06:56 CST 2019
In Category:
NoCategory
Description:
一个序列,支持区间加,统计所有长度在
$[l,r]$
内的路径和的和。
$1\leqslant n\leqslant 2\times10^5$
Solution:
首先可以转化成长度在
$[1,r]$
的减去长度在
$[l,l-1]$
的。
然后枚举长度和起始点,再交换求和号,最后可以写出这样一段代码:
int calc(int l)
{
int ans = 0;
for(int j = 1;j <= l;++j)ans += sum[j] * j;
for(int j = l + 1;j <= n;++j)ans += l * sum[j];
for(int j = 1;j <= n - l;++j)ans -= l * sum[j];
for(int j = n - l + 1;j <= n - 1;++j)ans -= (n - j) * sum[j];
return ans;
}
然后我们发现我们要维护的东西就是:
$\sum a[i],\sum a[i]\times i,\sum a[i]\times (n-i)$
,还要支持区间加等差数列,可以用线段树维护,类似SDOI相关分析。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 200010
#define MOD 1000000007
#define I inline
int a[MAXN];
int sum[MAXN];
struct node
{
int lc,rc,l,r;
int sum,sum1,sum2,tagk,tagb;
}t[MAXN << 1];
int ptr = 0;
I int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
I void pushup(int rt)
{
t[rt].sum = (t[t[rt].lc].sum + t[t[rt].rc].sum) % MOD;
t[rt].sum1 = (t[t[rt].lc].sum1 + t[t[rt].rc].sum1) % MOD;
t[rt].sum2 = (t[t[rt].lc].sum2 + t[t[rt].rc].sum2) % MOD;
return;
}
void build(int &rt,int l,int r)
{
rt = newnode();
t[rt].l = l;t[rt].r = r;
if(l == r)
{
t[rt].sum = sum[l];
t[rt].sum1 = 1ll * l * sum[l] % MOD;
t[rt].sum2 = 1ll * (n - l) * sum[l] % MOD;
return;
}
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
pushup(rt);
return;
}
#define INV6 166666668
#define INV2 500000004
I int Mod(int a){return (a >= MOD ? a - MOD : (a < 0 ? a + MOD : a));}
I int sum2(int n){return 1ll * n * (n + 1) % MOD * (2 * n + 1) % MOD * INV6 % MOD;}
I int sum1(int l,int r){return Mod(1ll * r * (r + 1) % MOD * INV2 % MOD - 1ll * (l - 1) * l % MOD * INV2 % MOD);}
I int sum2(int l,int r){return Mod(sum2(r) - sum2(l - 1));}
I void addtag(int rt,int k,int b)
{
int s0 = t[rt].r - t[rt].l + 1,s1 = sum1(t[rt].l,t[rt].r),s2 = sum2(t[rt].l,t[rt].r);
if(b)t[rt].sum = Mod(t[rt].sum + 1ll * b * s0 % MOD);
if(k)t[rt].sum = Mod(t[rt].sum + 1ll * k * s1 % MOD);
if(b)t[rt].sum1 = Mod(t[rt].sum1 + 1ll * b * s1 % MOD);
if(k)t[rt].sum1 = Mod(t[rt].sum1 + 1ll * k * s2 % MOD);
if(b)t[rt].sum2 = Mod(t[rt].sum2 + Mod(1ll * b * n % MOD * s0 % MOD - 1ll * b * s1 % MOD));
if(k)t[rt].sum2 = Mod(t[rt].sum2 + Mod(1ll * k * n % MOD * s1 % MOD - 1ll * k * s2 % MOD));
t[rt].tagk = Mod(t[rt].tagk + k);t[rt].tagb = Mod(t[rt].tagb + b);
return;
}
I void pushdown(int rt)
{
if(t[rt].tagk == 0 && t[rt].tagb == 0)return;
addtag(t[rt].lc,t[rt].tagk,t[rt].tagb);
addtag(t[rt].rc,t[rt].tagk,t[rt].tagb);
t[rt].tagk = 0;t[rt].tagb = 0;
return;
}
void add(int rt,int L,int R,int k,int b,int l,int r)
{
if(L > R)return;
if(L <= l && r <= R){addtag(rt,k,b);return;}
pushdown(rt);
if(L <= mid)add(t[rt].lc,L,R,k,b,l,mid);
if(R > mid)add(t[rt].rc,L,R,k,b,mid + 1,r);
pushup(rt);
return;
}
int query(int rt,int L,int R,int k,int l,int r)
{
if(L <= l && r <= R)
{
if(k == 0)return t[rt].sum;
if(k == 1)return t[rt].sum1;
if(k == 2)return t[rt].sum2;
}
pushdown(rt);
register int res = 0;
if(L <= mid)res = Mod(res + query(t[rt].lc,L,R,k,l,mid));
if(R > mid)res = Mod(res + query(t[rt].rc,L,R,k,mid + 1,r));
return res;
}
I int calc(int l)
{
register int ans = 0;
if(1 <= l)ans = Mod(ans + query(root,1,l,1,1,n));
if(l + 1 <= n)ans = Mod(ans + 1ll * l * query(root,l + 1,n,0,1,n) % MOD);
if(1 <= n - l)ans = Mod(ans - 1ll * l * query(root,1,n - l,0,1,n) % MOD + MOD);
if(n - l + 1 <= n - 1)ans = Mod(ans - query(root,n - l + 1,n - 1,2,1,n));
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= n;++i)a[i] = rd();
for(register int i = 1;i <= n;++i)sum[i] = Mod(sum[i - 1] + a[i]);
build(root,1,n);
register int opt,l,r,v;
for(register int k = 1;k <= m;++k)
{
opt = rd();
if(opt == 1)
{
l = rd();r = rd();v = rd();if(l > r)swap(l,r);
add(root,l,r,v,Mod(v - 1ll * v * l % MOD),1,n);
add(root,r + 1,n,0,1ll * (r - l + 1) * v % MOD,1,n);
}
else
{
l = rd();r = rd();
printf("%d\n",Mod(calc(r) - calc(l - 1)));
}
}
return 0;
}
In tag:
数据结构-线段树
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡