卧薪尝胆,厚积薄发。
HAOI2018 字串覆盖
Date: Tue Mar 26 21:36:23 CST 2019
In Category:
NoCategory
Description:
给两个串
$A$
和
$B$
,每次询问给出
$l_1,r_1,l_2,r_2$
,设
$S=A[l_1:r_1],T=B[l_2:r_2]$
,每次可以在
$S$
中删除一个和
$T$
相等的子串,获得
$K-i$
的收益,
$i$
是字串的起始位置在
$A$
中的下标,求获得收益的最大值。
$1\leqslant n,q\leqslant 10^5,51\leqslant r-l\leqslant 2\times 10^3$
的询问不超过
$11000$
个。
Solution:
看数据范围估计就是让你阈值分块。
首先一个贪心是不停找第一次出现的位置直到贡献为负。
首先对于
$r-l$
很大的询问我们可以建立
$SA$
,然后就是在合法的区间内找一个在上一次之后最靠前的位置,二位偏序可以用主席树上二分,当
$r-l>2\times 10^3$
的时候单次复杂度才
$100\log n$
,当
$51\leqslant r-l\leqslant 2\times 10^3$
的时候数据随机,都可以这样做。
当
$r-l$
很小的时候总共只有
$50$
种不同的长度,我们考虑询问实际上就是每次向后找第一个相同的串,那么我们建立
$50$
棵树,每个点的父亲是这个点往后
$l$
个位置这个串下一次出现的位置,然后每次询问树上倍增就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
#define I inline
#define R register
I int rd()
{
R int res = 0,f = 1;R char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
I char getc()
{
R char c = getchar();
while(!islower(c))c = getchar();
return c;
}
int n,m,K;
#define MAXN 400010
char A[MAXN],B[MAXN];
char s[MAXN];
int tot = 0;
namespace SA
{
int sa[MAXN],rnk[MAXN],height[MAXN];
int c[MAXN],c1[MAXN],c2[MAXN];
int f[MAXN][19];
int lg[MAXN];
I void make_SA(int n,int m)
{
R int *x = c1,*y = c2;
R int p;
for(R int i = 1;i <= m;++i)c[i] = 0;
for(R int i = 1;i <= n;++i)++c[x[i] = s[i]];
for(R int i = 1;i <= m;++i)c[i] += c[i - 1];
for(R int i = n;i >= 1;--i)sa[c[x[i]]--] = i;
for(R int k = 1;k <= n;k = k << 1)
{
p = 0;
for(R int i = 1;i <= n;++i)y[i] = 0;
for(R int i = n - k + 1;i <= n;++i)y[++p] = i;
for(R int i = 1;i <= n;++i)if(sa[i] > k)y[++p] = sa[i] - k;
for(R int i = 1;i <= m;++i)c[i] = 0;
for(R int i = 1;i <= n;++i)++c[x[y[i]]];
for(R int i = 1;i <= m;++i)c[i] += c[i - 1];
for(R int i = n;i >= 1;--i)sa[c[x[y[i]]]--] = y[i];
p = 1;
swap(x,y);
x[sa[1]] = 1;
for(R int i = 2;i <= n;++i)
{
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
}
if(p >= n)break;
m = p;
}
for(R int i = 1;i <= n;++i)rnk[sa[i]] = i;
R int k = 0;
for(R int i = 1;i <= n;++i)
{
if(rnk[i] == 1)continue;
if(k)--k;
R int j = sa[rnk[i] - 1];
while(j + k <= n && i + k <= n && s[j + k] == s[i + k])++k;
height[rnk[i]] = k;
}
for(R int i = 1;i <= n;++i)f[i][0] = height[i];
for(R int k = 1,l = 1;k <= 18;++k,l = l << 1)
for(R int i = 1;i <= n - l * 2 + 1;++i)
f[i][k] = min(f[i][k - 1],f[i + l][k - 1]);
for(R int i = 2;i <= n;++i)lg[i] = lg[i >> 1] + 1;
return;
}
I int LCP(int a,int b)
{
if(a == b)return 2 * n - sa[a];
++a;
R int l = lg[b - a + 1];
R int res = min(f[a][l],f[b - (1 << l) + 1][l]);
return res;
}
I int getl(int p,int lcp)
{
R int l = 1,r = p,mid;
while(l < r)
{
mid = ((l + r) >> 1);
if(LCP(mid,p) >= lcp)r = mid;
else l = mid + 1;
}
return l;
}
I int getr(int p,int lcp)
{
R int l = p,r = 2 * n,mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(LCP(p,mid) >= lcp)l = mid;
else r = mid - 1;
}
return r;
}
}
namespace FT
{
struct node
{
int lc,rc;
int sum;
}t[MAXN * 32];
int ptr = 0;
I int newnode(){return ++ptr;}
int root[MAXN];
#define mid ((l + r) >> 1)
I void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
I void insert(int &rt,int p,int l,int r)
{
R int k = newnode();t[k] = t[rt];rt = k;
++t[rt].sum;
if(l == r)return;
if(p <= mid)insert(t[rt].lc,p,l,mid);
else insert(t[rt].rc,p,mid + 1,r);
return;
}
I int query(int rtr,int rtl,int p,int l,int r)
{
if(t[rtr].sum - t[rtl].sum == 0)return 0;
if(l == r)return l;
R int res = 0;
if(p <= mid)res = query(t[rtr].lc,t[rtl].lc,p,l,mid);
if(res == 0)res = query(t[rtr].rc,t[rtl].rc,p,mid + 1,r);
return res;
}
}
I int calc(int l,int r,int p)
{
if(p >= n)return 0;
R int lef = SA::getl(SA::rnk[l + n],r - l + 1);
R int rig = SA::getr(SA::rnk[l + n],r - l + 1);
R int res = FT::query(FT::root[rig],FT::root[lef - 1],p,1,n);
if(res + r - l > n)return 0;
else return res;
}
namespace DT
{
int f[MAXN][18];
long long cnt[MAXN][18];
}
struct query
{
int l1,r1,l2,r2,id;
}q[MAXN];
int qnum = 0;
int vec[52][MAXN];
long long ans[MAXN];
I long long work2(int l1,int r1,int l2,int r2)
{
R long long ans = 0;
R int cur = l1;
while(true)
{
R int nxt = calc(l2,r2,cur);
cur = nxt + r2 - l2 + 1;
if(nxt == 0)break;
if(nxt + r2 - l2 > r1)break;
if(K - nxt < 0)break;
ans += K - nxt;
}
return ans;
}
int pos[MAXN];
int main()
{
scanf("%d%d",&n,&K);
for(R int i = 1;i <= n;++i)A[i] = getc();
for(R int i = 1;i <= n;++i)B[i] = getc();
for(R int i = 1;i <= n;++i)s[++tot] = A[i];
for(R int i = 1;i <= n;++i)s[++tot] = B[i];
SA::make_SA(2 * n,256);
FT::build(FT::root[0],1,n);
for(R int i = 1;i <= 2 * n;++i)
{
FT::root[i] = FT::root[i - 1];
if(SA::sa[i] <= n)FT::insert(FT::root[i],SA::sa[i],1,n);
}
scanf("%d",&m);
R int l1,r1,l2,r2;
for(R int i = 1;i <= m;++i)
{
l1 = rd();r1 = rd();l2 = rd();r2 = rd();
if(r2 - l2 + 1 <= 51)
{
q[++qnum] = (query){l1,r1,l2,r2,i};
int len = r2 - l2 + 1;
vec[len][++vec[len][0]] = qnum;
}
else
{
ans[i] = work2(l1,r1,l2,r2);
}
}
for(R int i = 1;i <= n;++i)DT::cnt[i][0] = K - i;
for(R int l = 1;l <= 51;++l)
{
if(vec[l][0] == 0)continue;
for(R int le = 1,ri = le;le <= 2 * n;ri = le = ri + 1)
{
while(SA::height[ri + 1] >= l)++ri;
pos[0] = 0;
for(int i = le;i <= ri;++i)if(SA::sa[i] + l - 1 <= n)pos[++pos[0]] = SA::sa[i];
sort(pos + 1,pos + 1 + pos[0]);
for(int i = 1,j = 1;i <= pos[0];++i)
{
while(j <= pos[0] && pos[j] - pos[i] < l)++j;
if(j > pos[0])DT::f[pos[i]][0] = 0;
else DT::f[pos[i]][0] = pos[j];
}
}
R int lim = SA::lg[n / l];
for(R int k = 1;k <= lim;++k)
{
for(R int i = 1;i <= n;++i)
{
DT::f[i][k] = DT::f[DT::f[i][k - 1]][k - 1];
DT::cnt[i][k] = DT::cnt[i][k - 1] + DT::cnt[DT::f[i][k - 1]][k - 1];
}
}
for(R int it = 1;it <= vec[l][0];++it)
{
R int k = vec[l][it];
R int l1 = q[k].l1,r1 = q[k].r1,l2 = q[k].l2,r2 = q[k].r2;
R int cur = calc(l2,r2,l1);
if(cur == 0)
{
ans[q[k].id] = 0;
continue;
}
R long long res = 0;
for(R int i = lim;i >= 0;--i)
{
if(DT::f[cur][i] != 0 && K - DT::f[cur][i] > 0 && DT::f[cur][i] + r2 - l2 <= r1)
{
res += DT::cnt[cur][i];
cur = DT::f[cur][i];
}
}
if(cur + r2 - l2 <= r1)res += K - cur;
ans[q[k].id] = res;
}
}
for(R int i = 1;i <= m;++i)printf("%lld\n",ans[i]);
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡