卧薪尝胆,厚积薄发。
贞鱼
Date: Mon Apr 01 07:41:58 CST 2019
In Category:
NoCategory
Description:
有
$n$
个人要坐
$k$
辆车。如果第
$i$
个人和第
$j$
个人同坐一辆车,就会产生
$w_{i,j}$
的代价。最小化代价。
$1\leqslant n\leqslant4000$
Solution:
转移方程是:
$$
f[i][k]=\min(f[j][k-1]+val(j+1,i))
$$
其中:
$$
val(l,r)=\sum_{i=l}^r\sum_{j=l}^rw_{i,j}
$$
然后
$f[i][x]$
单调减并且是下凸的,然后就可以
$WQS$
二分了,不过我们会发现决策具有单调性,因为我们如果把
$val(l,r)$
的区域画在二维平面上就会发现
$val(l,r)$
满足四边形不等式,于是就可以决策单调性优化了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,k;
#define MAXN 4010
int s[MAXN][MAXN];
struct state
{
int val,cnt;
};
inline state operator + (state a,state b){return (state){a.val + b.val,a.cnt + b.cnt};}
struct seg
{
int l,r,p;
}q[MAXN];
int head,tail;
state f[MAXN];
inline int sum(int l,int r){return s[r][r] - s[r][l - 1] - s[l - 1][r] + s[l - 1][l - 1];}
inline bool operator < (state a,state b){return (a.val == b.val ? a.cnt < b.cnt : a.val < b.val);}
int val;
inline bool better(int a,int b,int p){return f[a] + (state){sum(a + 1,p) + val,1} < f[b] + (state){sum(b + 1,p) + val,1};}
inline state calc(int v)
{
val = v;
head = 1;tail = 0;
f[0] = (state){0,0};
q[++tail] = (seg){1,n,0};
for(register int i = 1;i <= n;++i)
{
f[i] = f[q[head].p] + (state){sum(q[head].p + 1,i) + val,1};
++q[head].l;
if(q[head].l > q[head].r)++head;
register seg t;t.l = n + 1;t.r = n;t.p = i;
while(head <= tail && better(t.p,q[tail].p,q[tail].l))t.l = q[tail--].l;
if(head <= tail && better(t.p,q[tail].p,q[tail].r))
{
register int l = q[tail].l,r = q[tail].r,mid;
while(l < r)
{
mid = ((l + r + 1) >> 1);
if(better(q[tail].p,t.p,mid))l = mid;
else r = mid - 1;
}
q[tail].r = l;t.l = l + 1;
}
if(t.l <= t.r)q[++tail] = t;
}
return f[n];
}
int main()
{
scanf("%d%d",&n,&k);
for(register int i = 1;i <= n;++i)for(register int j = 1;j <= n;++j)s[i][j] = rd();
for(register int i = 1;i <= n;++i)for(register int j = 1;j <= n;++j)s[i][j] = s[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
register int l = 0,r = 0x3f3f3f3f,mid;
while(l < r)
{
mid = ((l + r) >> 1);
if(calc(mid).cnt <= k)r = mid;
else l = mid + 1;
}
cout << (calc(l).val - l * k) / 2 << endl;
return 0;
}
In tag:
DP-DP凸优化 DP-决策单调性DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡