卧薪尝胆,厚积薄发。
NOI2018 屠龙勇士
Date: Wed Apr 03 21:31:18 CST 2019
In Category:
NoCategory
Description:
给一个方程组:
$$
\begin{cases}
c_1x&\equiv&m_1&\pmod {p_1}\\
c_2x&\equiv&m_2&\pmod {p_2}\\
&&\vdots\\
c_nx&\equiv&m_n&\pmod {p_n}\end{cases}
$$
$1\leqslant n\leqslant 10^5$
Solution:
扩展中国剩余定理裸题:
首先我们应该先把
$c_i$
除到右边去,但是如果
$\gcd(c_i,p_i)\ne 1$
那么就没有逆元,但是考虑这个式子的本质是:
$$
c_ix+kp_i=m
$$
那么我们把
$a_i,p_i,m$
都除掉
$\gcd(c_i,p_i,m)$
还是成立的,这个时候如果
$\gcd(c_i,p_i)\ne 1$
并且,那么肯定无解,因为
$m\not|\gcd(c_i,p_i)$
。
于是我们现在成功把方程组化成了:
$$
\begin{cases}
x&\equiv&m_1&\pmod {p_1}\\
x&\equiv&m_2&\pmod {p_2}\\
&&\vdots\\
x&\equiv&m_n&\pmod {p_n}
\end{cases}
$$
于是这个就是裸的
$exCRT$
了,再推一遍式子:
$$
x=m_1+p_1k_1=m_2+p_2k_2\Rightarrow p_1k_1-p_2k_2=m_2-m_1
$$
$exgcd$
解出一组解,然后把方程合并成
$x\equiv m'\pmod{\text{lcm}(p_1,p_2)}$
的形式即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#include<cctype>
#include<cstring>
using namespace std;
typedef long long ll;
inline ll rd()
{
register ll res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 100010
ll a[MAXN],p[MAXN],v[MAXN];
multiset<ll> s;
ll c[MAXN];
ll gcd(ll a,ll b){return (b == 0 ? a : gcd(b,a % b));}
ll x[MAXN];
ll mul(ll a,ll b,ll p)
{
ll res = 0;
for(;b > 0;b = b >> 1,a = (a + a) % p)if(b & 1)res = (res + a) % p;
return res;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == 0){x = 1;y = 0;return a;}
ll t = exgcd(b,a % b,y,x);
y -= x * (a / b);
return t;
}
ll calcinv(ll k,ll p)
{
ll x,y;
exgcd(k,p,x,y);
x = (x % p + p) % p;
return x;
}
void work()
{
scanf("%d%d",&n,&m);
s.clear();
for(int i = 1;i <= n;++i)a[i] = rd();
for(int i = 1;i <= n;++i)p[i] = rd();
int sum = 0;
for(int i = 1;i <= n;++i)sum += (p[i] == 1);
for(int i = 1;i <= n;++i)v[i] = rd();
for(int i = 1;i <= m;++i)s.insert(rd());
for(int i = 1;i <= n;++i)
{
multiset<ll>::iterator it = s.begin();
if(*it < a[i])it = --s.upper_bound(a[i]);
c[i] = *it;s.erase(it);
s.insert(v[i]);
}
if(sum == n)
{
ll ans = 0;
for(int i = 1;i <= n;++i)ans = max(ans,(ll)ceil(1.0 * a[i] / c[i]));
cout << ans << endl;
return;
}
for(int i = 1;i <= n;++i)
{
ll g = gcd(c[i],gcd(a[i],p[i]));
c[i] /= g;a[i] /= g;p[i] /= g;
if(gcd(c[i],p[i]) != 1)
{
puts("-1");
return;
}
ll inv = calcinv(c[i],p[i]);
x[i] = mul(a[i],inv,p[i]);
}
ll X = x[1],P = p[1];
for(int i = 2;i <= n;++i)
{
if(x[i] < X)swap(x[i],X),swap(p[i],P);
ll xx,yy;
ll g = exgcd(P,p[i],xx,yy);
if((x[i] - X) % g != 0)
{
puts("-1");
return;
}
ll newP = P / gcd(P,p[i]) * p[i];
ll t = (x[i] - X) / g;
xx = (xx + newP) % newP;
xx = mul(xx,t,newP);
ll res = (X + mul(P,xx,newP)) % newP;
X = res;P = newP;
}
printf("%lld\n",X);
return;
}
int main()
{
int testcases = rd();
while(testcases--)work();
return 0;
}
In tag:
数学-数论-扩展中国剩余定理
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡