卧薪尝胆,厚积薄发。
最长链
Date: Fri Oct 19 19:28:14 CST 2018
In Category:
NoCategory
Description:
给定一棵有
$n$
个节点的树,求每个节点到其他节点的最大距离。
$1\leqslant n\leqslant 10^4$
Solution1:
有一个性质就是先随便找出来一个直径,那么和一个点距离最远的点一定可以是直径的一个端点,因为如果是别的点可以换到直径上更长,所以树剖就行了。
Code1:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 10010
#define R register
inline int rd()
{
R int res = 0,f = 1;
R char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
struct edge
{
int to,nxt,w;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b,int c)
{
++edgenum;e[edgenum].to = b;e[edgenum].w = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].w = c;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
int fa[MAXN],siz[MAXN],son[MAXN],top[MAXN],dep[MAXN];
void dfs1(int k,int depth)
{
siz[k] = 1;dep[k] = depth;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa[k])continue;
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])
{
son[k] = e[i].to;
}
}
return;
}
void dfs2(int k,int tp)
{
top[k] = tp;
if(son[k] == 0)return;
dfs2(son[k],tp);
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
dfs2(e[i].to,e[i].to);
}
}
return;
}
int LCA(int a,int b)
{
while(top[a] != top[b])
{
if(dep[top[a]] < dep[top[b]])swap(a,b);
a = fa[top[a]];
}
return (dep[a] < dep[b] ? a : b);
}
int dis[MAXN];
int BFS(int s)
{
queue<int> q;q.push(s);
memset(dis,0x3f,sizeof(dis));
dis[s] = 0;
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(dis[e[i].to] > dis[k] + e[i].w)
{
dis[e[i].to] = dis[k] + e[i].w;
q.push(e[i].to);
}
}
}
int d = 0,ans;
for(int i = 1;i <= n;++i)
{
if(dis[i] > d)
{
d = dis[i];
ans = i;
}
}
return ans;
}
int dist(int a,int b){return dis[a] + dis[b] - 2 * dis[LCA(a,b)];}
int main()
{
freopen("length.in","r",stdin);
freopen("length.out","w",stdout);
scanf("%d",&n);
R int f,v;
for(R int i = 2;i <= n;++i)
{
f = rd();v = rd();
add(i,f,v);
}
dfs1(1,1);dfs2(1,1);
int x,y;
x = BFS(1);y = BFS(x);
BFS(1);
for(int i = 1;i <= n;++i)
{
printf("%d\n",max(dist(i,x),dist(i,y)));
}
fclose(stdin);
fclose(stdout);
return 0;
}
Solution2:
其实可以树形
$DP$
,先求一个子树中的最长链,然后再求一个从父亲来的最长链,可以先求一个
$maxf$
表示子树中最长链,并记一下它来源于那棵子树,然后对于其他子树都可以用
$maxf+e[i].w$
更新,对于这个子树,反正只有一个,可以再遍历一下其他所有子树再求一边最大值。
Code2:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 10010
struct edge
{
int to,nxt,w;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,int c)
{
++edgenum;e[edgenum].to = b;e[edgenum].w = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].w = c;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
bool v[MAXN];
int f[MAXN],g[MAXN];
void dp1(int k)
{
v[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
dp1(e[i].to);
f[k] = max(f[k],f[e[i].to] + e[i].w);
}
v[k] = false;
return;
}
void dp2(int k)
{
v[k] = true;
int maxf = 0,bel,val;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
g[e[i].to] = g[k] + e[i].w;
if(f[e[i].to] + e[i].w > maxf)
{
maxf = f[e[i].to] + e[i].w;
bel = e[i].to;val = e[i].w;
}
}
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
if(e[i].to != bel)
{
g[e[i].to] = max(g[e[i].to],maxf + e[i].w);
}
}
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to] || e[i].to == bel)continue;
g[bel] = max(g[bel],f[e[i].to] + e[i].w + val);
}
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
dp2(e[i].to);
}
v[k] = false;
return;
}
int main()
{
freopen("length.in","r",stdin);
freopen("length.out","w",stdout);
scanf("%d",&n);
int fa,v;
for(int i = 2;i <= n;++i)
{
scanf("%d%d",&fa,&v);
add(i,fa,v);
}
dp1(1);
dp2(1);
for(int i = 1;i <= n;++i)
{
printf("%d\n",max(f[i],g[i]));
}
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
树-树的直径
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡