卧薪尝胆,厚积薄发。
猫题3
Date: Fri Feb 22 21:58:53 CST 2019
In Category:
NoCategory
Description:
给出一棵
$n$
个节点的树,每个点有颜色
$c_i$
,求树上有多少个连通块包含不超过两种不同颜色。
$1\leqslant n\leqslant 5\times 10^5$
Solution:
显然是联通块
$DP$
,首先假设根节点一定会被包含,那么根节点的颜色是一定包含的,那么其实我们只要在状态里记录另外一个颜色就行了,也就是设
$f[i][j]$
表示以
$i$
为根的子树,另外一种颜色是
$j$
的联通块数,这样不难写出一个
$O(n^2)$
的
$DP$
,观察一下这个
$DP$
需要这样几个操作:全局赋
$1$
,和子树合并对应位置相乘,单点求值,单点赋值,全局求和,显然这些都可以用线段树做,也就是整体
$DP$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 300010
#define N 300000
#define MOD 1000000007
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
struct edge{int to,nxt;}e[MAXN << 1];
int edgenum = 0,lin[MAXN] = {0};
void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
}
int col[MAXN];
struct node
{
int lc,rc;
int sum,add,mul;
node(){sum = add = 0;mul = 1;}
}t[MAXN * 20];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
#define mid ((l + r) >> 1)
void pushdown(int rt,int l,int r)
{
int ll = l,lr = mid,rl = mid + 1,rr = r;
if(t[rt].lc == 0)t[rt].lc = newnode();
if(t[rt].rc == 0)t[rt].rc = newnode();
t[t[rt].lc].sum = (1ll * t[t[rt].lc].sum * t[rt].mul % MOD + 1ll * (lr - ll + 1) * t[rt].add % MOD) % MOD;
t[t[rt].rc].sum = (1ll * t[t[rt].rc].sum * t[rt].mul % MOD + 1ll * (rr - rl + 1) * t[rt].add % MOD) % MOD;
t[t[rt].lc].mul = 1ll * t[t[rt].lc].mul * t[rt].mul % MOD;
t[t[rt].rc].mul = 1ll * t[t[rt].rc].mul * t[rt].mul % MOD;
t[t[rt].lc].add = (1ll * t[t[rt].lc].add * t[rt].mul % MOD + t[rt].add) % MOD;
t[t[rt].rc].add = (1ll * t[t[rt].rc].add * t[rt].mul % MOD + t[rt].add) % MOD;
t[rt].mul = 1;t[rt].add = 0;
return;
}
int merge(int x,int y,int l,int r)
{
if(x == 0 || y == 0)return x + y;
if(l == r)
{
t[x].sum = 1ll * t[x].sum * t[y].sum % MOD;
return x;
}
if(t[x].lc == 0 && t[x].rc == 0)swap(x,y);
if(t[y].lc == 0 && t[y].rc == 0)
{
t[x].sum = 1ll * t[x].sum * t[y].add % MOD;
t[x].mul = 1ll * t[x].mul * t[y].add % MOD;
t[x].add = 1ll * t[x].add * t[y].add % MOD;
return x;
}
pushdown(x,l,r);pushdown(y,l,r);
t[x].lc = merge(t[x].lc,t[y].lc,l,mid);
t[x].rc = merge(t[x].rc,t[y].rc,mid + 1,r);
t[x].sum = (t[t[x].lc].sum + t[t[x].rc].sum) % MOD;
return x;
}
int query(int rt,int p,int l,int r)
{
if(l == r)return t[rt].sum;
if(t[rt].lc == 0 && t[rt].rc == 0)return t[rt].add;
pushdown(rt,l,r);
if(p <= mid)return query(t[rt].lc,p,l,mid);
else return query(t[rt].rc,p,mid + 1,r);
}
void set(int rt,int p,int k,int l,int r)
{
if(l == r){t[rt].sum = k;return;}
pushdown(rt,l,r);
if(p <= mid)set(t[rt].lc,p,k,l,mid);
else set(t[rt].rc,p,k,mid + 1,r);
t[rt].sum = (t[t[rt].lc].sum + t[t[rt].rc].sum) % MOD;
return;
}
int ans = 0;
void dp(int k,int fa)
{
root[k] = newnode();t[root[k]].sum += N + 1;t[root[k]].add += 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa)continue;
dp(e[i].to,k);
if(col[k] == col[e[i].to])
{
t[root[e[i].to]].sum += N + 1;t[root[e[i].to]].add += 1;
root[k] = merge(root[k],root[e[i].to],0,N);
}
else
{
set(root[k],col[e[i].to],1ll * query(root[k],col[e[i].to],0,N) * (query(root[e[i].to],col[k],0,N) + 1) % MOD,0,N);
}
}
ans = (ans + t[root[k]].sum) % MOD;
ans = (ans - 1ll * query(root[k],0,0,N) * N % MOD + MOD) % MOD;
return;
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)col[i] = rd();
for(int i = 2;i <= n;++i)add(i,rd());
dp(1,0);
cout << ans << endl;
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
DP-整体DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡