卧薪尝胆,厚积薄发。
Balanced Number
Date: Sun May 27 08:30:25 CST 2018
In Category:
NoCategory
Description:
平衡数是以这个数字的某一位为支点,另外两边的数字大小乘以力矩之和相等的数字,求出区间内平衡数的个数。
$1\le T\le 30$
$0\le L\le R \le 10^{18}$
Solution:
转化为
$calc(r)-calc(l-1)$
,枚举支点的位置,对于支点左边的加,右边的减,然后就是数位
$DP$
记搜模板题了。如果到了最后一位
$sum=0$
,就加一,注意如果
$sum<0$
了,那之后再减
$sum$
会一直小于
$0$
,可以直接剪枝。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
int testcases;
ll l,r;
ll f[20][2000];
ll bit[20];
ll dfs(int pos,ll sum,int pivot,bool bord)
{
if(sum < 0)return 0;
if(pos == 0)
{
if(sum == 0)return 1;
else return 0;
}
if(!bord && f[pos][sum] != -1)return f[pos][sum];
int limit = bord ? bit[pos] : 9;
ll res = 0;
for(int i = 0;i <= limit;++i)
{
if(pos > pivot)res += dfs(pos - 1,sum + i * (pos - pivot),pivot,(bord && (i == limit)));
else res += dfs(pos - 1,sum - i * (pivot - pos),pivot,(bord && (i == limit)));
}
if(!bord)f[pos][sum] = res;
return res;
}
ll calc(ll t)
{
if(t == -1)return 0;
memset(f,0,sizeof(f));
ll res = 0;
ll len = 0;
memset(bit,0,sizeof(bit));
while(t > 0)
{
bit[++len] = t % 10;
t = t / 10;
}
for(int i = 1;i <= len;++i)
{
memset(f,-1,sizeof(f));
res += dfs(len,0,i,true);
}
return res - len + 1;
}
void work()
{
cin >> l >> r;
cout << calc(r) - calc(l - 1) << endl;
return;
}
int main()
{
scanf("%d",&testcases);
for(int i = 1;i <= testcases;++i)
{
work();
}
return 0;
}
In tag:
DP-数位DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡