卧薪尝胆,厚积薄发。
Tree Cutting
Date: Fri Jan 18 10:41:30 CST 2019
In Category:
NoCategory
Description:
一棵树,节点的权值
$\in[0,m)$
。对每个
$v\in[0,m)$
,求出权值为
$v$
的连通块个数。
$1\leqslant n\leqslant 1000,1\leqslant m\leqslant 1000$
Solution:
首先可以用类似切树游戏那道题的做法用
$FWT$
维护树形
$DP$
,但是还有一个更好写的做法,就是类似
$shopping$
那道题的做法,用点分治来维护树形依赖关系的背包问题,然后在
$dfs$
序上
$DP$
就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 1050
#define MOD 1000000007
int val[MAXN];
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int siz[MAXN],d[MAXN],root,s;
#define INF 0x3f3f3f3f
bool vis[MAXN];
void getroot(int k,int fa)
{
siz[k] = 1;d[k] = 0;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa || vis[e[i].to])continue;
getroot(e[i].to,k);
siz[k] += siz[e[i].to];
d[k] = max(d[k],siz[e[i].to]);
}
d[k] = max(d[k],s - siz[k]);
if(d[k] < d[root])root = k;
return;
}
int dfn[MAXN],st[MAXN],ed[MAXN],tot = 0;
void dfs(int k,int fa)
{
st[k] = ++tot;dfn[tot] = k;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(vis[e[i].to] || e[i].to == fa)continue;
dfs(e[i].to,k);
}
ed[k] = tot;
return;
}
int f[MAXN][MAXN];
int ans[MAXN];
void calc(int k)
{
tot = 0;
dfs(k,0);
memset(f[tot + 1],0,sizeof(f[tot + 1]));
f[tot + 1][0] = 1;
for(int i = tot;i >= 1;--i)
{
memset(f[i],0,sizeof(f[i]));
int v = dfn[i];
for(int j = 0;j < m;++j)f[i][j] = (f[i][j] + f[ed[v] + 1][j]) % MOD;
for(int j = 0;j < m;++j)f[i][j] = (f[i][j] + f[i + 1][j ^ val[v]]) % MOD;
}
f[1][0] = (f[1][0] - 1 + MOD) % MOD;
for(int j = 0;j < m;++j)ans[j] = (ans[j] + f[1][j]) % MOD;
return;
}
void divide(int k)
{
calc(k);
vis[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(vis[e[i].to])continue;
root = 0;s = siz[e[i].to];
getroot(e[i].to,k);
divide(root);
}
return;
}
void work()
{
edgenum = 0;
memset(lin,0,sizeof(lin));
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)scanf("%d",&val[i]);
int a,b;
for(int i = 1;i < n;++i)
{
scanf("%d%d",&a,&b);
add(a,b);
}
memset(vis,0,sizeof(vis));
root = 0;d[0] = INF;s = n;
memset(ans,0,sizeof(ans));
getroot(1,0);
divide(root);
for(int j = 0;j < m - 1;++j)printf("%d ",ans[j]);
printf("%d\n",ans[m - 1]);
return;
}
int main()
{
int testcases;
scanf("%d",&testcases);
while(testcases--)work();
return 0;
}
In tag:
树-点分治
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡