卧薪尝胆,厚积薄发。
网格
Date: Thu Jan 10 10:59:49 CST 2019
In Category:
NoCategory
Description:
$n\times n$
的网格摆
$n$
个物品,每行每列摆一个。摆放完后每一时刻,如果一个格子没有物品,但若其上下左右相邻的四个格子中至少有两个格子存在物品,则这个格子便会有物品。求有多少种摆放方式最后所有的格子都有了物品。
$1\leqslant n\leqslant 500000$
Solution:
通过找规律可以发现一种摆放方式是合法的要么
$n=1$
要么他可以表示为沿对角线依次排列的多个合法的摆放方式,也就是说可以沿对角线把他划分成多个合法的摆放,那么我们设
$G$
表示沿某个对角线依次排列的方案数,
$F$
表示原问题的方案数,那么显然
$F[0]=G[0]=0,F[1]=G[1]=1,G(n)=2\times F[n](n\geqslant 2)$
,然后我们还能发现我们可以把一个
$G$
旋转
$90^\circ$
放在一个角,作为最小的不能划分的部分,其他的可以随意划分,这样保证了计数的不重不漏,因此有:
$$
G[n]=\sum_{i=0}^nG[i]\times F[n-i](n\geqslant 2)
$$
那么我们可以列出两个
$G$
和
$F$
生成函数的等式,然后联立可以解出一个只与
$F$
有关的二次方程,最后直接对它牛顿迭代就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#pragma GCC optimize(3)
inline int rd()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
using namespace std;
int n;
#define P 998244353
#define MAXN 1050010
#define INV2 499122177
int a[MAXN];
int ww[MAXN << 1],*g = ww + MAXN;
int rev[MAXN];
#define R register
inline int power(int a,int b)
{
R int res = 1;
while(b > 0)
{
if(b & 1)res = 1ll * res * a % P;
a = 1ll * a * a % P;
b = b >> 1;
}
return res;
}
inline void NTT(int f[],int l,int type)
{
for(R int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(R int i = 2;i <= l;i = i << 1)
{
R int wn = g[type * l / i];
for(R int j = 0;j < l;j += i)
{
R int w = 1;
for(R int k = j;k < j + i / 2;++k)
{
R int u = f[k],t = 1ll * w * f[k + i / 2] % P;
f[k] = (u + t) % P;
f[k + i / 2] = (u - t + P) % P;
w = 1ll * w * wn % P;
}
}
}
if(type == -1)
{
R int ni = power(l,P - 2);
for(R int i = 0;i < l;++i)f[i] = 1ll * f[i] * ni % P;
}
return;
}
inline int init(int deg)
{
R int l = 0,len = 1;
for(;len < (deg << 1);len = len << 1)++l;
for(R int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
g[0] = g[-len] = 1;g[1] = g[1 - len] = power(3,(P - 1) / len);
for(R int i = 2;i < len;++i)g[i] = g[i - len] = 1ll * g[i - 1] * g[1] % P;
return len;
}
int invtmp[MAXN];
void inv(int a[],int b[],int deg)
{
if(deg == 1)
{
b[0] = P - 1;
return;
}
inv(a,b,((deg + 1) >> 1));
R int len = init(deg);
for(R int i = 0;i < deg;++i)invtmp[i] = a[i];
for(R int i = deg;i < len;++i)invtmp[i] = 0;
NTT(invtmp,len,1);NTT(b,len,1);
for(R int i = 0;i < len;++i)
{
b[i] = (2ll * b[i] - 1ll * invtmp[i] * b[i] % P * b[i] % P + P) % P;
}
NTT(b,len,-1);
for(R int i = deg;i < len;++i)b[i] = 0;
return;
}
int tmp1[MAXN],tmp2[MAXN],tmp3[MAXN];
int fc2[MAXN],fz[MAXN],fm[MAXN],tmp[MAXN];
void calc(int f[],int deg)
{
if(deg == 1)return;
calc(f,((deg + 1) >> 1));
R int len = init(deg);
for(R int i = 0;i < deg;++i)fm[i] = 2 * f[i] % P;
fm[1] = (fm[1] + 1) % P;fm[0] = (fm[0] - 1 + P) % P;
for(R int i = 0;i < deg;++i)tmp[i] = 0;//cout << "st" << endl;
inv(fm,tmp,deg);//cout << "ed" << endl;
for(R int i = 0;i < deg;++i)f[i] = 1ll * f[i] * INV2 % P;
for(R int i = 0;i < deg;++i)fz[i] = (f[i] - f[i - 1] + P) % P;
fz[1] = (fz[1] - 1 + P) % P;
NTT(fz,len,1);NTT(tmp,len,1);
for(R int i = 0;i < len;++i)fz[i] = 1ll * fz[i] * tmp[i] % P;
NTT(fz,len,-1);
for(R int i = deg;i < len;++i)fz[i] = tmp[i] = 0;
for(R int i = 0;i < deg;++i)f[i] = (f[i] + fz[i]) % P;
return;
}
int F[MAXN];
int main()
{
freopen("grid.in","r",stdin);
freopen("grid.out","w",stdout);
scanf("%d",&n);
R int mx = 0;
for(R int i = 1;i <= n;++i)a[i] = rd();
for(R int i = 1;i <= n;++i)mx = max(mx,a[i]);
calc(F,mx + 1);
for(R int i = 1;i <= n;++i)printf("%d\n",F[a[i]]);cout << endl;
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
数学-多项式-多项式牛顿迭代法
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡