卧薪尝胆,厚积薄发。
数据结构
Date: Fri Mar 22 13:28:46 CST 2019
In Category:
NoCategory
Description:
单点修改,区间历史最小和。
$1\leqslant n\leqslant 10^5$
Solution:
首先把询问
$(l,r)$
放在二维平面上,那么一次单点加操作可以看成是一次矩形加操作,查询是查询单点历史最小值,于是还是维护值,标记,历史最小值,历史最小标记,和在序列上一样,只不过要用二维数据结构,我写了
$KDT$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n,m;
#define MAXN 100010
typedef long long ll;
int a[MAXN];
ll sum[MAXN];
struct query
{
int op,x,y;
}q[MAXN];
struct point
{
int d[2],id;
}p_[MAXN],p[MAXN];
int D;
bool cmp_D(point a,point b){return (a.d[D] == b.d[D] ? a.d[D ^ 1] < b.d[D ^ 1] : a.d[D] < b.d[D]);}
int cnt = 0,tot = 0;
struct node
{
int lc,rc;
int d[2],mn[2],mx[2];
ll val,minval,tag,mintag;
}t[MAXN];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
void maintain(int rt)
{
t[rt].mn[0] = t[rt].mx[0] = t[rt].d[0];t[rt].mn[1] = t[rt].mx[1] = t[rt].d[1];
if(t[rt].lc)
{
int lc = t[rt].lc;
t[rt].mn[0] = min(t[rt].mn[0],t[lc].mn[0]);t[rt].mx[0] = max(t[rt].mx[0],t[lc].mx[0]);
t[rt].mn[1] = min(t[rt].mn[1],t[lc].mn[1]);t[rt].mx[1] = max(t[rt].mx[1],t[lc].mx[1]);
}
if(t[rt].rc)
{
int rc = t[rt].rc;
t[rt].mn[0] = min(t[rt].mn[0],t[rc].mn[0]);t[rt].mx[0] = max(t[rt].mx[0],t[rc].mx[0]);
t[rt].mn[1] = min(t[rt].mn[1],t[rc].mn[1]);t[rt].mx[1] = max(t[rt].mx[1],t[rc].mx[1]);
}
return;
}
void pushdown(int rt)
{
if(t[rt].lc)
{
int lc = t[rt].lc;
t[lc].mintag = min(t[lc].mintag,t[lc].tag + t[rt].mintag);
t[lc].minval = min(t[lc].minval,t[lc].val + t[rt].mintag);
t[lc].val += t[rt].tag;t[lc].tag += t[rt].tag;
}
if(t[rt].rc)
{
int rc = t[rt].rc;
t[rc].mintag = min(t[rc].mintag,t[rc].tag + t[rt].mintag);
t[rc].minval = min(t[rc].minval,t[rc].val + t[rt].mintag);
t[rc].val += t[rt].tag;t[rc].tag += t[rt].tag;
}
t[rt].tag = t[rt].mintag = 0;
return;
}
int mv[MAXN],len[MAXN];
void build(int &rt,int l,int r,int type)
{
if(l > r)return;
rt = newnode();
int mid = ((l + r) >> 1);
D = type;sort(p + l,p + r + 1,cmp_D);
t[rt].d[0] = p[mid].d[0];t[rt].d[1] = p[mid].d[1];
t[rt].val = t[rt].minval = sum[p[mid].d[1]] - sum[p[mid].d[0] - 1];//cout << rt << " " << p[mid].d[0] << " " << p[mid].d[1] << " " << t[rt].val << endl;
for(int i = l;i <= mid - 1;++i)++len[p[i].id],mv[p[i].id] = mv[p[i].id] << 1 | 0;
build(t[rt].lc,l,mid - 1,type ^ 1);
for(int i = mid + 1;i <= r;++i)++len[p[i].id],mv[p[i].id] = mv[p[i].id] << 1 | 1;
build(t[rt].rc,mid + 1,r,type ^ 1);
maintain(rt);
return;
}
int in(int rt,int lx,int rx,int ly,int ry)
{
if(lx <= t[rt].mn[0] && t[rt].mx[0] <= rx && ly <= t[rt].mn[1] && t[rt].mx[1] <= ry)return 1;
if(lx > t[rt].mx[0] || rx < t[rt].mn[0] || ly > t[rt].mx[1] || ry < t[rt].mn[1])return -1;
return 0;
}
int in2(int rt,int lx,int rx,int ly,int ry)
{
if(lx <= t[rt].d[0] && t[rt].d[0] <= rx && ly <= t[rt].d[1] && t[rt].d[1] <= ry)return 1;
else return 0;
}
void add(int rt,int lx,int rx,int ly,int ry,ll v)
{
int id = in(rt,lx,rx,ly,ry);
if(id == -1)return;
if(id == 1)
{
t[rt].val += v;
t[rt].tag += v;
t[rt].mintag = min(t[rt].mintag,t[rt].tag);
t[rt].minval = min(t[rt].minval,t[rt].val);
return;
}
if(in2(rt,lx,rx,ly,ry))
{
t[rt].val += v;
t[rt].minval = min(t[rt].minval,t[rt].val);
}
pushdown(rt);
add(t[rt].lc,lx,rx,ly,ry,v);
add(t[rt].rc,lx,rx,ly,ry,v);
return;
}
ll query(int id)
{
int cur = root;
for(int i = len[id] - 1;i >= 0;--i)
{
pushdown(cur);
if(((mv[id] >> i) & 1) == 0)cur = t[cur].lc;
if(((mv[id] >> i) & 1) == 1)cur = t[cur].rc;
}//cout << cur << endl;
return t[cur].minval;
}
map<pair<int,int>,int> ps;
int main()
{
freopen("ds.in","r",stdin);
freopen("ds.out","w",stdout);
n = rd();m = rd();
for(int i = 1;i <= n;++i)a[i] = rd();
for(int i = 1;i <= n;++i)sum[i] = sum[i - 1] + a[i];
for(int i = 1;i <= m;++i)
{
q[i].op = rd();q[i].x = rd();q[i].y = rd();
if(q[i].op == 2){++cnt;p_[cnt].d[0] = q[i].x;p_[cnt].d[1] = q[i].y;}
}
for(int i = 1;i <= cnt;++i)if(i == 1 || p_[i].d[0] != p_[i - 1].d[0] || p_[i].d[1] != p_[i - 1].d[1])p[++tot] = p_[i];
for(int i = 1;i <= tot;++i)p[i].id = i,ps[make_pair(p[i].d[0],p[i].d[1])] = i;
build(root,1,tot,0);
for(int i = 1;i <= m;++i)
{
if(q[i].op == 1)
{
add(root,1,q[i].x,q[i].x,n,q[i].y - a[q[i].x]);
a[q[i].x] = q[i].y;
}
else
{
printf("%lld\n",query(ps[make_pair(q[i].x,q[i].y)]));
}
}
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
数据结构-KDTree
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡