卧薪尝胆,厚积薄发。
集合
Date: Thu Mar 21 21:11:47 CST 2019
In Category:
NoCategory
Description:
对于集合
$S$
,定义
$F(S)=A^{\min S}$
,求
$E(F(S)|S\subseteq N\cap[1,n],|S|=k)$
。
$1\leqslant n< MOD=998244353,1\leqslant k\leqslant 10^7$
Solution:
首先枚举最小值后面显然选
$k-1$
个得到答案的式子为:
$$
\frac{\sum_iA^i\binom{n-i}{k-1}}{\binom nk}
$$
考试的时候一直想在
$n$
那一维递推,但是结束之后得知可以用
$k$
递推。
只考虑
$\sum_iA^i\binom{n-i}{k-1}$
,下面那个可以
$O(k)$
暴力算,设
$f(k)=\sum_iA^i\binom{n-i}{k-1}$
,由于
$\sum_{i=0}^{n-1}A_i=\frac{A^n-1}{A-1}(A\ne 0)$
:
$$
\begin{align}
f(k)&=\sum_{i=1}^{n-k+1}A^i\binom{n-i}{k-1}\\
&=\sum_{i=1}^{n-k+1}(\sum_{j=0}^{i-1}A^j\times (A-1)+1)\times \binom{n-i}{k-1}\\
&=\sum_{i=1}^{n-k+1}\sum_{j=1}^{i-1}A^j\times (A-1)\times \binom{n-i}{k-1}+\sum_{i=1}^{n-k+1}A\binom{n-i}{k-1}\\
&=\sum_{j=1}^{n-k}A^j\times (A-1)\times \sum_{i=j+1}^{n-k+1}\binom{n-i}{k-1}+\sum_{i=1}^{n-k+1}A\binom{n-i}{k-1}\\
&=\sum_{j=1}^{n-k}A^j\times (A-1)\times \sum_{i=k-1}^{n-j-1}\binom i{k-1}+\sum_{i=k-1}^{n-1}A\binom i{k-1}\\
&=\sum_{j=1}^{n-k}A^j\times (A-1)\times \sum_{i=k-1}^{n-j-1}\binom i{k-1}+A\sum_{i=k-1}^{n-1}\binom i{k-1}\\
&=\sum_{i=1}^{n-k}A^j\times (A-1)\times \binom {n-i}k+A\binom nk\\
&=f(k+1)\times (A-1)+A\binom nk
\end{align}
$$
那么我们一直展开下去,直到
$f(n)=A$
:
$$
f(k)=A\sum_{i=k}^n\binom ni\times (A-1)^{i-k}=A(A-1)^{-k}\sum_{i=k}^n\binom ni\times (A-1)^i
$$
后面那部分是一个只有一部分的二项式定理:
$$
f(k)=A(A-1)^{-k}(A^n-\sum_{i=0}^{k-1}\binom ni\times(A-1)^i)
$$
于是就可以
$O(k)$
求了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#pragma GCC optimize(2)
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
#define MAXK 10000010
#define K 10000000
int n,k,A;
int fac[MAXK],nfac[MAXK],inv[MAXK];
#define P 998244353
int power(int a,int b)
{
int res = 1;
while(b > 0)
{
if(b & 1)res = 1ll * res * a % P;
a = 1ll * a * a % P;
b = b >> 1;
}
return res;
}
void work()
{
scanf("%d%d%d",&n,&k,&A);
if(A == 1){cout << 1 << endl;return;}
nfac[0] = 1;for(int i = 1,cur = n;i <= k;++i,--cur)nfac[i] = 1ll * nfac[i - 1] * cur % P;
int ans = power(A,n);
int pows = 1;
for(int i = 0;i <= k - 1;++i)ans = (ans - 1ll * nfac[i] * inv[i] % P * pows % P + P) % P,pows = 1ll * pows * (A - 1) % P;
ans = 1ll * ans * A % P * power(power(A - 1,P - 2),k) % P * power(nfac[k],P - 2) % P * fac[k] % P;
cout << ans << endl;
return;
}
int main()
{
freopen("set.in","r",stdin);
freopen("set.out","w",stdout);
fac[0] = 1;for(int i = 1;i <= K;++i)fac[i] = 1ll * fac[i - 1] * i % P;
inv[K] = power(fac[K],P - 2);for(int i = K - 1;i >= 0;--i)inv[i] = 1ll * inv[i + 1] * (i + 1) % P;
int testcases = rd();
while(testcases--)work();
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
数学-组合数学-二项式定理 数学-组合数学-组合数
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡