卧薪尝胆,厚积薄发。
doll
Date: Sat Mar 23 20:19:45 CST 2019
In Category:
NoCategory
Description:
一个抓娃娃机,每个娃娃有一个坐标,要求从
$(0,10^6)$
按
$1\sim n$
的顺序依次经过所有娃娃最后回到
$(10^6,10^6)$
,不能从娃娃下面经过,在最开始可以选择把一些娃娃
$+1$
,求调整后经过的最短距离。
$1\leqslant n\leqslant 10^6$
Solution:
列出答案的式子:
$$
\begin{align}
ans&=10^6-y_1+\sum_{i=1}^{n-1}\Big(2\times \mathrm{maxy}(\min(x_i,x_{i+1}),\max(x_i,x_{i+1}))-y_i-y_{i+1}\Big)+10^6-y_n\\
&=2\times \Big(10^6+\sum_{i=1}^{n-1}\mathrm{maxy}(\min(x_i,x_{i+1}),\max(x_i,x_{i+1}))-\sum_{i=1}^ny_i\Big)
\end{align}
$$
也就是我们实际上是要最小化:
$$
\sum_{i=1}^{n-1}\mathrm{maxy}(\min(x_i,x_{i+1}),\max(x_i,x_{i+1}))-\sum_{i=1}^ny_i
$$
先考虑一个部分分,
$y_i$
两两不同,那么因为最多只能加一,所以不同的
$y_i$
不会相互影响,我们只要统计出有多少个区间以这个点为最高值,然后计算一下加一优还是不加一优即可。
上面那个做法启发我们分别处理每个
$\mathrm{maxy}(\min(x_i,x_{i+1}),\max(x_i,x_{i+1}))$
,那么问题变成:给你一个序列和很多区间,可以给一个元素
$+1$
,最大化
$(+1$
的元素个数
$)-($
有
$+1$
的区间个数
$)$
。
这个可以
$DP$
:先假设所有区间都有加一,设
$dp[i]$
表示
$i$
一定
$+1$
的最小值,转移为:
$$
dp[i]=\min_{j<i}(dp[j]+cnt(j+1,i-1)+1)
$$
$cnt$
表示完全落在这个区间的区间个数。
这个可以线段树优化
$DP$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math")
using namespace std;
int n;
namespace io {
const int SIZE = (1 << 21) + 1;
char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
// getchar
#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
// print the remaining part
inline void flush () {
fwrite (obuf, 1, oS - obuf, stdout);
oS = obuf;
}
// putchar
inline void putc (char x) {
*oS ++ = x;
if (oS == oT) flush ();
}
// input a signed integer
template <class I>
inline void gi (I &x) {
for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
}
// print a signed integer
template <class I>
inline void print (I &x) {
if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
while (x) qu[++ qr] = x % 10 + '0', x /= 10;
while (qr) putc (qu[qr --]);
}
//no need to call flush at the end manually!
struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: gi;
using io :: putc;
using io :: print;
#define MAXN 1000010
#define N 1000000
struct point
{
int x,y;
}p[MAXN];
bool cmp_y(point a,point b){return a.y < b.y;}
#define INF 0x3f3f3f3f
typedef long long ll;
#define reg register
#define I inline
struct node
{
int lc,rc;
int tag,maxv;
node(){tag = 0;maxv = 0;}
}t[MAXN << 1];
int ptr = 0;
I int newnode()
{
reg int k = ++ptr;
t[k].lc = t[k].rc = t[k].tag = t[k].maxv = 0;
return k;
}
int root;
#define mid ((l + r) >> 1)
I void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
I void add(int rt,int L,int R,int v,int l,int r)
{
if(L <= l && r <= R){t[rt].tag += v;t[rt].maxv += v;return;}
if(L <= mid)add(t[rt].lc,L,R,v,l,mid);
if(R > mid)add(t[rt].rc,L,R,v,mid + 1,r);
t[rt].maxv = max(t[t[rt].lc].maxv,t[t[rt].rc].maxv) + t[rt].tag;
return;
}
I int query(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].maxv;
reg int res = 0;
if(L <= mid)res = max(res,query(t[rt].lc,L,R,l,mid));
if(R > mid)res = max(res,query(t[rt].rc,L,R,mid + 1,r));
return res + t[rt].tag;
}
struct seg
{
int l,r,maxv;
}s[MAXN];
seg ss[MAXN];
int tot = 0;
int pos[MAXN];
bool cmp_r(seg a,seg b){return a.r < b.r;}
bool cmp_maxv(seg a,seg b){return a.maxv < b.maxv;}
I ll work(int v)
{
sort(pos + 1,pos + 1 + pos[0]);
ptr = root = 0;
sort(ss + 1,ss + 1 + tot,cmp_r);
for(reg int i = 1,cur = 1;i <= tot;++i)
{
ss[i].l = lower_bound(pos + 1,pos + 1 + pos[0],ss[i].l) - pos;
while(cur < pos[0] && pos[cur + 1] <= ss[i].r)++cur;
ss[i].r = cur;
}
build(root,0,pos[0]);
for(reg int i = 1,cur = 1;i <= pos[0];++i)
{
add(root,i,i,query(root,0,i - 1,0,pos[0]) + 1,0,pos[0]);
while(cur <= tot && ss[cur].r == i)add(root,0,ss[cur].l - 1,1,0,pos[0]),++cur;
}
reg ll ans = -t[root].maxv + tot + 1ll * tot * v - 1ll * pos[0] * v;
return ans;
}
int main()
{
freopen("doll.in","r",stdin);
freopen("doll.out","w",stdout);
scanf("%d",&n);
for(reg int i = 1;i <= n;++i)gi(p[i].x),gi(p[i].y);
build(root,0,N);
for(reg int i = 1;i <= n;++i)add(root,p[i].x,p[i].x,p[i].y,0,N);
for(reg int i = 1;i < n;++i)
{
s[i].l = min(p[i].x,p[i + 1].x);
s[i].r = max(p[i].x,p[i + 1].x);
s[i].maxv = query(root,s[i].l,s[i].r,0,N);
}
sort(s + 1,s + 1 + n - 1,cmp_maxv);
sort(p + 1,p + 1 + n,cmp_y);
reg ll ans = 0;
reg int i,j;
for(i = 1,j = 1;i < n;++i)
{
ss[++tot] = s[i];
if(i == N || s[i].maxv != s[i + 1].maxv)
{
pos[0] = 0;
while(p[j].y < s[i].maxv)ans -= p[j].y + 1,++j;
while(j <= n && p[j].y == s[i].maxv)pos[++pos[0]] = p[j].x,++j;
ans += work(s[i].maxv);
tot = 0;
}
}
while(j <= n)ans -= p[j].y + 1,++j;
ans = (ans + N) * 2;
cout << ans << endl;
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
DP-数据结构优化DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡