卧薪尝胆,厚积薄发。
旅游
Date: Thu Oct 11 21:48:33 CST 2018
In Category:
NoCategory
Description:
$n$
个点,
$m$
条边,第
$i$
条边的权值是
$2^i$
,每条边可以重复经过,求一个欧拉回路使得经过的总边权和最小。
$1\leqslant n\leqslant 5\times 10^5$
Solution:
既然边的权值是二的幂,那么就满足贪心性质,先把所有奇度数点找出来,这样的点一定有偶数个,然后把所有边一定都是要走一遍的,然后可以猜一个结论,就是剩下的奇度数点一定两两配对,也就是说从一个点走到另一个点,然后由于可以贪心,所以把这个图的最小生成树求出来,匹配一定在这棵树上,因为我们宁愿走所有小边权边也不愿走一个大边权边,所以做一个树形
$DP$
把这个匹配求出来即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
#define MAXN 500010
#define MOD 998244353
typedef long long ll;
int power(int a,int b)
{
int res = 1;
while(b > 0)
{
if(b & 1)res = (ll)res * (ll)a % MOD;
a = (ll)a * (ll)a % MOD;
b = b >> 1;
}
return res;
}
int n,m;
struct edge
{
int to,nxt,v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,int c)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = c;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].v = c;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
int fa[MAXN];
int find(int x){return (fa[x] == x ? x : fa[x] = find(fa[x]));}
int ans = 0;
int ind[MAXN];
bool tag[MAXN];
int f[MAXN];
int siz[MAXN];
bool v[MAXN];
void dp(int k)
{
v[k] = true;
if(tag[k])siz[k] = 1;
else siz[k] = 0;
f[k] = 0;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
dp(e[i].to);
if((siz[e[i].to] % 2) == 0)f[k] = (f[k] + f[e[i].to]) % MOD;
else f[k] = (f[k] + (power(2,e[i].v) + f[e[i].to]) % MOD) % MOD;
siz[k] += siz[e[i].to];
}
return;
}
int main()
{
freopen("B.in","r",stdin);
freopen("B.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)fa[i] = i;
int a,b;
for(int i = 1;i <= m;++i)
{
a = read();b = read();
ans = (ans + power(2,i)) % MOD;
++ind[a];++ind[b];
if(find(a) == find(b))continue;
else
{
add(a,b,i);
fa[find(a)] = find(b);
}
}
for(int i = 1;i <= n;++i)if((ind[i] % 2) == 1)tag[i] = true;
memset(v,false,sizeof(v));
dp(1);
cout << (ans + f[1]) % MOD << endl;
fclose(stdin);
fclose(stdout);
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡