卧薪尝胆,厚积薄发。
sum
Date: Tue Oct 16 13:06:39 CST 2018
In Category:
NoCategory
Description:
多次询问:
$$
S_{n,m}={n\choose m}
$$
$1\leqslant n\leqslant 10^5$
Solution:
首先组合数有公式:
$$
S_{n+1,m}=S_{n,m}\times 2-{n\choose m}
$$
给杨辉三角每一行每隔
$\sqrt n$
标一个点,共
$n\sqrt n$
个点,用上面那个公式预处理出所有这些点的位置的值。
询问时先获得上一个标点的位置的值,然后预处理阶乘及其逆元
$O(1)$
求组合数,暴力边上那些不足
$\sqrt n$
的部分,时间复杂度
$O(n\sqrt n)$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
#define BLOCK 400
#define MAXN 100010
int sum[MAXN][BLOCK];
#define MOD 1000000007
int fac[MAXN],inv[MAXN];
typedef long long ll;
inline int power(int a,int b)
{
register int res = 1;
while(b > 0)
{
if(b & 1)res = 1ll * res * a % MOD;
a = 1ll * a * a % MOD;
b = b >> 1;
}
return res;
}
inline int C(int n,int m)
{
if(n < m)return 0;
return 1ll * fac[n] * inv[m] % MOD * (ll)inv[n - m] % MOD;
}
inline void init()
{
fac[0] = 1;for(register int i = 1;i < MAXN;++i)fac[i] = 1ll * fac[i - 1] * i % MOD;
inv[0] = 1;inv[MAXN - 1] = power(fac[MAXN - 1],MOD - 2);
for(register int i = MAXN - 2;i >= 1;--i)inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
for(register int i = 0;i * BLOCK < MAXN;++i)sum[0][i] = 1;
for(register int i = 1;i < MAXN;++i)
for(register int j = 0;j * BLOCK < MAXN;++j)
sum[i][j] = (sum[i - 1][j] * 2 % MOD - C(i - 1,j * BLOCK) + MOD) % MOD;
return;
}
inline void work()
{
register int n,m;
n = read();m = read();
register int p = m / BLOCK;
register int res = sum[n][p];
p = p * BLOCK + 1;
for(register int i = p;i <= m;++i)res = (res + C(n,i)) % MOD;
printf("%d\n",res);
return;
}
int main()
{
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
init();
int id,testcases;
scanf("%d%d",&id,&testcases);
while(testcases--)work();
fclose(stdin);
fclose(stdout);
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡