卧薪尝胆,厚积薄发。
c
Date: Sat Oct 20 21:03:26 CST 2018
In Category:
NoCategory
Description:
一个无向连通图,
$n $
个点,
$m $
条边,每条边有一个颜色。 保证无自环,没有长度超过
$ 2 $
的简单环。现有
$ q $
个询问:给出两个点
$ x,y$
,选择一条
$ x $
到
$ y $
简单路径,价值为相同颜色的极大连续段个数,求出最大的价值。
$1\leqslant n\leqslant $
Solution:
首先发现图是一棵有重边的树,那就可以用树上的算法来做,然后又发现一条边只要有三种颜色,就可以随意切换,于是实际上只要每条边存三个不同颜色即可,我用的
$vector+unique$
实现,最后树上倍增就行了,合并的复杂度是
$O(81)$
的。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m,q;
#define MAXN 100010
#define MAXM 300010
map<pair<int,int>,vector<int> > es;
struct edge
{
int to,nxt;
vector<int> v;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b,vector<int> v)
{
++edgenum;e[edgenum].to = b;e[edgenum].v = v;e[edgenum].nxt = lin[a];lin[a] = edgenum;
++edgenum;e[edgenum].to = a;e[edgenum].v = v;e[edgenum].nxt = lin[b];lin[b] = edgenum;
return;
}
bool v[MAXN];
int fa[MAXN],fae[MAXN];
int dep[MAXN];
void dfs(int k)
{
v[k] = true;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(v[e[i].to])continue;
fa[e[i].to] = k;
fae[e[i].to] = i;
dep[e[i].to] = dep[k] + 1;
dfs(e[i].to);
}
v[k] = false;
return;
}
struct skip
{
int v[3][3];
int a[3],b[3];
int id;
skip()
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
}
}f[MAXN][17];
inline skip merge(skip a,skip b)
{
if(b.a[0] == 0)return a;
register skip res;memset(res.v,0,sizeof(res.v));
for(register int i = 0;i < 3;++i)if(a.a[i] != 0)
for(register int j = 0;j < 3;++j)if(a.b[j] != 0)
for(register int k = 0;k < 3;++k)if(b.a[k] != 0)
for(register int l = 0;l < 3;++l)if(b.b[l] != 0)
res.v[i][l] = max(res.v[i][l],a.v[i][j] + b.v[k][l] - (a.b[j] == b.a[k]));
res.id = a.id;
for(register int i = 0;i < 3;++i)
if(a.a[i] != 0)res.a[i] = a.a[i];
for(register int i = 0;i < 3;++i)
if(b.b[i] != 0)res.b[i] = b.b[i];
return res;
}
#define fi first
#define se second
#define INF 0x3f3f3f3f
inline int query(int a,int b)
{
if(a == b)return 0;
if(dep[a] < dep[b])swap(a,b);
register skip ra,rb;
for(register int i = 16;i >= 0;--i)
{
if(dep[f[a][i].id] >= dep[b])
{
ra = merge(f[a][i],ra);
a = f[a][i].id;
}
}
if(a == b)
{
register int ans = 0;
for(register int i = 0;i < 3;++i)for(int j = 0;j < 3;++j)
if(ra.a[i] != 0 && ra.b[j] != 0)
ans = max(ans,ra.v[i][j]);
return ans;
}
for(register int i = 16;i >= 0;--i)
{
if(f[a][i].id != f[b][i].id)
{
ra = merge(f[a][i],ra);a = f[a][i].id;
rb = merge(f[b][i],rb);b = f[b][i].id;
}
}
ra = merge(f[a][0],ra);
rb = merge(f[b][0],rb);
register int ans = 0;
register int lef[3] = {0},lc[3],rig[3] = {0},rc[3];
for(register int i = 0;i < 3;++i)if(ra.a[i] != 0)
for(register int j = 0;j < 3;++j)if(ra.b[j] != 0)
if(ra.v[i][j] > lef[i])lef[i] = ra.v[i][j],lc[i] = ra.a[i];
for(register int i = 0;i < 3;++i)if(rb.a[i] != 0)
for(register int j = 0;j < 3;++j)if(rb.b[j] != 0)
if(rb.v[i][j] > rig[i])rig[i] = rb.v[i][j],rc[i] = rb.a[i];
for(register int i = 0;i < 3;++i)if(lef[i] != 0)
for(register int j = 0;j < 3;++j)if(rig[j] != 0)
ans = max(ans,lef[i] + rig[j] - (lc[i] == rc[j]));
return ans;
}
int main()
{
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
scanf("%d%d",&n,&m);
register int a,b,c;
for(register int i = 1;i <= m;++i)
{
a = read();b = read();c = read();
if(a > b)swap(a,b);
es[make_pair(a,b)].push_back(c);
}
for(register map<pair<int,int>,vector<int> >::iterator it = es.begin();it != es.end();++it)
{
sort(it -> se.begin(),it -> se.end());
register vector<int>::iterator iter = unique(it -> se.begin(),it -> se.end());
it -> se.erase(iter,it -> se.end());
if(it -> se.size() > 3)it -> se.resize(3);
add(it -> fi.fi,it -> fi.se,it -> se);
}
dep[1] = 1;
dfs(1);
for(register int i = 2;i <= n;++i)
{
for(register int it = 0;it < e[fae[i]].v.size();++it)
{
f[i][0].v[it][it] = 1;
f[i][0].a[it] = e[fae[i]].v[it];
f[i][0].b[it] = e[fae[i]].v[it];
f[i][0].id = fa[i];
}
}
for(register int i = 1;i <= 16;++i)
for(register int k = 1;k <= n;++k)
f[k][i] = merge(f[f[k][i - 1].id][i - 1],f[k][i - 1]);
scanf("%d",&q);
for(register int i = 1;i <= q;++i)
{
a = read();b = read();
printf("%d\n",query(a,b));
}
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
树-树上倍增
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡