卧薪尝胆,厚积薄发。
u
Date: Wed Nov 07 16:05:56 CST 2018
In Category:
NoCategory
Description:
一个
$n\times n$
的矩阵
$A$
,每次给左上顶点为
$(r,c)$
、直角边长为
$l$
的下三角区域加上
$s$
。输出最终矩阵的元素异或和。
$1\leqslant n\leqslant 10^3$
Solution:
先处理最后求值显然可以差分,但是这个只能对每行差分,那么我们可以把差分数组差分,即先求一边前缀和得到差分数组,然后再求一边前缀和得到原矩阵。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
#define R register
typedef long long ll;
inline ll rd()
{
R ll res = 0,f = 1;
R char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,q;
#define MAXN 1010
ll c1[MAXN][MAXN];
ll c2[MAXN][MAXN];
ll m[MAXN][MAXN];
int main()
{
freopen("u.in","r",stdin);
freopen("u.out","w",stdout);
scanf("%d%d",&n,&q);
int x,y,l;
ll s;
for(int i = 1;i <= q;++i)
{
scanf("%d%d%d%lld",&x,&y,&l,&s);
c1[x][y] += s;
if(x + l <= n && y + l <= n)c1[x + l][y + l] -= s;
c2[x + l][y] -= s;
if(x + l <= n && y + l <= n)c2[x + l][y + l] += s;
}
ll ans = 0;
for(int i = 1;i <= n;++i)
{
for(int j = 1;j <= n;++j)
{
c1[i][j] += c1[i - 1][j - 1];
c2[i][j] += c2[i][j - 1];
m[i][j] = m[i - 1][j] + c1[i][j] + c2[i][j];
ans ^= m[i][j];
}
}
cout << ans << endl;
fclose(stdin);
fclose(stdout);
return 0;
}
In tag:
技巧-差分
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡