卧薪尝胆,厚积薄发。
LNR1 验题
Date: Sat Feb 16 23:22:28 CST 2019
In Category:
NoCategory
Description:
给出一棵树和一个独立集,求这个独立集字典序排名大
$k$
的独立集。
$1\leqslant n\leqslant 10^6$
Solution:
先从大往小枚举
$LCP$
的长度,因为集合个数是指数级的因此不会枚举很多,具体来说就是给每个点定一个要求表示必须选,必须不选,可选可不选,然后求树上独立集个数,确定了
$lcp$
之后再从后往前一位位确定。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
#define INF 2000000000000000000
inline int rd()
{
register int res = 0;register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res;
}
struct myll
{
long long v;
inline friend myll operator + (myll a,myll b){return (myll){a.v + b.v > INF ? INF : a.v + b.v};}
inline friend myll operator * (myll a,myll b)
{
if(!a.v || !b.v)return (myll){0};if(a.v == INF || b.v == INF) return (myll){INF};
return (myll){((__builtin_clzll(a.v) + __builtin_clzll(b.v) < 66) ? INF : a.v * b.v)};
}
};
typedef myll ll;
int n;
ll k;
#define MAXN 1000010
int a[MAXN],b[MAXN];
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
inline void add(int a,int b)
{
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
int I[MAXN];
int son[MAXN],fa[MAXN],dep[MAXN],top[MAXN],bot[MAXN],siz[MAXN];
int deg[MAXN];
int rnk[MAXN],th[MAXN],tot = 0;
void dfs1(int k,int depth)
{
dep[k] = depth;siz[k] = 1;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k])
{
fa[e[i].to] = k;
dfs1(e[i].to,depth + 1);
siz[k] += siz[e[i].to];
if(son[k] == 0 || siz[e[i].to] > siz[son[k]])son[k] = e[i].to;
}
}
return;
}
int chid[MAXN];
void dfs2(int k,int tp)
{
top[k] = tp;
rnk[k] = ++tot;th[tot] = k;
if(son[k] == 0){bot[k] = k;return;}
dfs2(son[k],tp);bot[k] = bot[son[k]];
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to != fa[k] && e[i].to != son[k])
{
chid[e[i].to] = ++deg[k];
dfs2(e[i].to,e[i].to);
}
}
return;
}
ll f[MAXN][2];
int tag[MAXN];
namespace T
{
struct node
{
int lc,rc;
ll mul;
}t[MAXN << 3];
int ptr = 0;
inline int newnode(){return ++ptr;}
int root[MAXN][2];
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
t[rt].mul = (myll){1};
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void build(int k)
{
if(deg[k] == 0)return;
build(root[k][0],1,deg[k]);
build(root[k][1],1,deg[k]);
return;
}
void set(int rt,int p,ll v,int l,int r)
{
if(l == r){t[rt].mul = v;return;}
if(p <= mid)set(t[rt].lc,p,v,l,mid);
else set(t[rt].rc,p,v,mid + 1,r);
t[rt].mul = t[t[rt].lc].mul * t[t[rt].rc].mul;
return;
}
void set(int k,int son,ll val1,ll val2)
{//cout << k << " " << son << " : " << val1.v << " " << val2.v << endl;
if(deg[k] == 0)return;
set(root[k][0],son,val1,1,deg[k]);
set(root[k][1],son,val2,1,deg[k]);
return;
}
ll query(int k,int tp)
{//cout << k << " " << tp << " " << t[root[k][tp]].mul.v << endl;
if(deg[k] == 0)return (myll){1};
else return t[root[k][tp]].mul;
}
}
struct matrix
{
ll m[2][2];
matrix(){memset(m,0,sizeof(m));}
inline friend matrix operator * (matrix a,matrix b)
{
matrix c;
c.m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0];
c.m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1];
c.m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0];
c.m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1];
return c;
}
}m[MAXN];
void dp(int k,int fa)
{
f[k][0].v = f[k][1].v = 1;
for(register int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa)continue;
dp(e[i].to,k);
f[k][1] = f[k][1] * f[son[k]][0];
f[k][0] = f[k][0] * (f[son[k]][0] + f[son[k]][1]);
if(e[i].to != son[k])T::set(k,chid[e[i].to],f[e[i].to][0] + f[e[i].to][1],f[e[i].to][0]);
}
m[k].m[0][1] = T::query(k,1);m[k].m[1][1].v = 0;
m[k].m[1][0] = m[k].m[0][0] = T::query(k,0);//cout << T::query(k,0).v << " " << T::query(k,1).v << endl;
//cout << k << " " << f[k][0].v << " " << f[k][1].v << endl;
return;
}
struct node
{
int lc,rc;
matrix mul;
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void maintain(int rt,int p,int l,int r)
{
if(l == r)
{
register int k = th[l];
m[k].m[0][1] = T::query(k,1);m[k].m[1][1].v = 0;
m[k].m[1][0] = m[k].m[0][0] = T::query(k,0);
if(tag[k] == 0)m[k].m[0][1].v = m[k].m[1][1].v = 0;
if(tag[k] == 1)m[k].m[0][0].v = m[k].m[1][0].v = 0;
t[rt].mul = m[k];
return;
}
if(p <= mid)maintain(t[rt].lc,p,l,mid);
else maintain(t[rt].rc,p,mid + 1,r);
t[rt].mul = t[t[rt].rc].mul * t[t[rt].lc].mul;
return;
}
matrix query(int rt,int L,int R,int l,int r)
{//cout << l << " " << r << " " << L << " " << R << endl;
if(L <= l && r <= R)return t[rt].mul;
if(R <= mid)return query(t[rt].lc,L,R,l,mid);
if(L > mid)return query(t[rt].rc,L,R,mid + 1,r);
return query(t[rt].rc,L,R,mid + 1,r) * query(t[rt].lc,L,R,l,mid);
}//bool check = false;
void change(int k,int tp)
{//if(check)cout << k << " -: " << tp << endl;
if(k == 0)return;
tag[k] = tp;
maintain(root,rnk[k],1,n);//query(k,0);if(fa[k] != 0)query(fa[k],0);
//if(check)cout << m[k].m[0][0].v << " " << m[k].m[0][1].v << " " << m[k].m[1][0].v << " " << m[k].m[1][1].v << endl;
//if(check)if(fa[k])cout << m[fa[k]].m[0][0].v << " " << m[fa[k]].m[0][1].v << " " << m[fa[k]].m[1][0].v << " " << m[fa[k]].m[1][1].v << endl;
//if(check)if(fa[k])query(fa[k],0);
while(top[k] != 1)
{
k = top[k];//if(check)cout << k << " -> " << fa[k] << " " << query(k,0).v << " " << query(k,1).v << endl;
matrix res = query(root,rnk[k],rnk[bot[k]],1,n);
T::set(fa[k],chid[k],res.m[0][0] + res.m[0][1],res.m[0][0]);
maintain(root,rnk[fa[k]],1,n);
k = fa[k];
}
return;
}
bool get[MAXN];
inline void write(int x){
register int y = 10,len = 1;
while(y <= x){y *= 10;++len;}
while(len--){y /= 10;putchar(x / y + 48);x %= y;}
return;
}
int main()
{//freopen("kkk.in","r",stdin);freopen("kkk.out","w",stdout);
//freopen("80.in","r",stdin);freopen("80.out","w",stdout);
scanf("%d%lld",&n,&k.v);
for(register int i = 1;i < n;++i)a[i] = rd() + 1;
for(register int i = 1;i < n;++i)b[i] = rd() + 1;
for(register int i = 1;i < n;++i)add(a[i],b[i]);
dfs1(1,1);dfs2(1,1);//cout << "!!!" << endl;
for(register int i = 1;i <= n;++i)T::build(i);
scanf("%d",&I[0]);
for(register int i = 1;i <= I[0];++i)I[i] = rd() + 1;
for(register int i = 1;i <= n;++i)tag[i] = 2;
dp(1,0);//cout << "!!!" << endl;
build(root,1,n);//cout << "###" << endl;
for(register int i = 1;i <= n;++i)maintain(root,rnk[i],1,n);//cout << "$$$" << endl;
//for(int i = 1;i <= n;++i)cout << i << " : " << (query(i,0) + query(i,1)).v << endl;
sort(I + 1,I + 1 + I[0]);
for(register int i = 1;i <= I[0];++i)
{
for(register int j = (i == 1 ? 0 : I[i - 1]) + 1;j < I[i];++j)change(j,0);
change(I[i],1);
}
register int lcp = I[0];I[I[0] + 1] = n + 1;
for(register int i = I[I[0]] + 1;i <= n;++i)change(i,2);//cout << "!!!" << endl;
for(register int i = I[0];i >= 0;--i)
{
matrix res = query(root,rnk[1],rnk[bot[1]],1,n);
ll val;val.v = res.m[0][0].v + res.m[0][1].v - 1;//cout << val.v << endl;
if(val.v < k.v)k.v -= val.v;else{lcp = i;break;}
if(i == 0)return 0;
change(I[i],0);
if(i != I[0])for(int p = I[i] + 1;p <= I[i + 1];++p)change(p,2);
}
//cout << lcp << endl;
//cout << "!!!" << endl;
for(register int i = 1;i <= lcp;++i)get[I[i]] = true;
I[I[0] + 1] = I[I[0]];
for(register int i = I[lcp + 1] + 1;i <= n;++i)
{//cout << i << endl;
change(i,1);//cout << "###" << endl;
matrix res = query(root,rnk[1],rnk[bot[1]],1,n);
ll val = res.m[0][0] + res.m[0][1];//cout << val << endl;
if(val.v < k.v)get[i] = false,k.v -= val.v,change(i,0);
else get[i] = true,k.v -= 1;
if(k.v == 0)break;
}
for(register int i = 1;i <= n;++i)if(get[i])write(i - 1),putchar(' ');
cout << endl;
return 0;
}
In tag:
DP-动态DP
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡