卧薪尝胆,厚积薄发。
      
    
            USACO4.4 追查坏牛奶Pollutant Control
        
        
        Description:
给一个图,求边数最小的最小割。
$1\leqslant n\leqslant 32,1\leqslant m\leqslant 1000$
Solution:
把边权设成
$c\times 1010+1$
做最小割即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 34
#define MAXM 1010
struct edge
{
	int to,nxt;
	long long f;
}e[MAXM << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,long long f)
{
	e[edgenum] = (edge){b,lin[a],f};lin[a] = edgenum++;
	e[edgenum] = (edge){a,lin[b],0};lin[b] = edgenum++;
	return;
}
int s,t;
int ch[MAXN];
bool BFS()
{
	memset(ch,-1,sizeof(ch));ch[s] = 0;
	queue<int> q;q.push(s);
	while(!q.empty())
	{
		int k = q.front();q.pop();
		for(int i = lin[k];i != -1;i = e[i].nxt)
		{
			if(ch[e[i].to] == -1 && e[i].f)
			{
				ch[e[i].to] = ch[k] + 1;
				q.push(e[i].to);
			}
		}
	}
	return (ch[t] != -1);
}
long long flow(int k,long long f)
{
	if(k == t)return f;
	long long r = 0;
	for(int i = lin[k];i != -1 && f > r;i = e[i].nxt)
	{
		if(ch[e[i].to] == ch[k] + 1 && e[i].f)
		{
			int l = flow(e[i].to,min(e[i].f,f - r));
			r += l;e[i].f -= l;e[i ^ 1].f += l;
		}
	}
	if(r == 0)ch[k] = -1;
	return r;
}
#define INF 0x3f3f3f3f3f3f3f3f
long long dinic()
{
	long long ans = 0,r;
	while(BFS())while(r = flow(s,INF))ans += r;
	return ans;
}
int main()
{
	memset(lin,-1,sizeof(lin));
	scanf("%d%d",&n,&m);
	int a,b;
	long long c;
	for(int i = 1;i <= m;++i)
	{
		scanf("%d%d%lld",&a,&b,&c);
		add(a,b,c * 1010 + 1);
	}
	s = 1;t = n;
	long long res = dinic();
	cout << res / 1010 << " " << res % 1010 << endl;
	return 0;
}
 In tag:
图论-dinic
          In tag:
图论-dinic 
          
        
        Copyright © 2020
        
          wjh15101051
        
      
      ღゝ◡╹)ノ♡
     Date: Sat Oct 27 16:57:01 CST 2018
          Date: Sat Oct 27 16:57:01 CST 2018
           In Category:
          In Category:
           
         Timeline
            Timeline
           About
            About
           Toolbox
            Toolbox
           Friends
              Friends