卧薪尝胆,厚积薄发。
Dynamic Rankings
Date: Sun Sep 09 17:33:38 CST 2018
In Category:
NoCategory
Description:
带修改区间第
$K$
大。
$1\le n \le 100000$
Solution:
做法一:树状数组套权值线段树,也就是带修改主席树。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m;
int a1[300100],s[300100],a2[300100];
int b[700100];
int in[300100][10];
int totn = 0;
int lowbit(int x)
{
return x & (-x);
}
bool cmp(int k1,int k2)
{
return b[k1] < b[k2];
};
struct node
{
int l,r;
node *ls,*rs;
int sum;
node(){l = r = sum = 0;ls = NULL;rs = NULL;}
}t[1500000];
node *ptr = t;
node *c[300100];
node *newnode(){return ++ptr;}
void build(node *(&root))
{
root = newnode();
root -> l = 1;
root -> r = totn;
return;
}
int search(int k)
{
int l = 1,r = totn,mid;
while(l < r)
{
mid = (l + r) >> 1;
if(b[s[mid]] == k)return mid;
if(b[s[mid]] < k)
{
l = mid + 1;
}
else
{
r = mid - 1;
}
}
}
void get(node *p,int c)
{
if(c == 1 && p -> ls == NULL)
{
p -> ls = newnode();
p -> ls -> l = p -> l;
p -> ls -> r = (p -> l + p -> r) >> 1;
return;
}
if(c == 2 && p -> rs == NULL)
{
p -> rs = newnode();
p -> rs -> l = ((p -> l + p -> r) >> 1) + 1;
p -> rs -> r = p -> r;
return;
}
return;
}
void insert(node *root,int x)
{
int mid;
while(root -> l != root -> r)
{
root -> sum += 1;
mid = (root -> l + root -> r) >> 1;
if(x <= mid)
{
get(root,1);
root = root -> ls;
}
else
{
get(root,2);
root = root -> rs;
}
}
root -> sum += 1;
return;
}
void remove(node *root,int x)
{
int mid;
while(root -> l != root -> r)
{
root -> sum -= 1;
mid = (root -> l + root -> r) >> 1;
if(x <= mid)
{
root = root -> ls;
}
else
{
root = root -> rs;
}
}
root -> sum -= 1;
return;
}
void add(int p,int x)
{
int k = search(x);
for(int i = p;i <= n;i += lowbit(i))
{
insert(c[i],k);
}
return;
}
void dec(int p,int x)
{
int k = search(x);
for(int i = p;i <= n;i += lowbit(i))
{
remove(c[i],k);
}
return;
}
node *d1[30000],*d2[30000];
int t1,t2;
int query(int l,int r,int k)
{
t1 = t2 = 0;
for(int i = l - 1;i >= 1;i -= lowbit(i))d1[++t1] = c[i];
for(int i = r;i >= 1;i -= lowbit(i))d2[++t2] = c[i];
int k1 = 0,k2 = 0,x;
int _l = 1,_r = totn;
while(_l != _r)
{
k1 = k2 = 0;
for(int i = 1;i <= t1;++i){if(d1[i] -> ls == NULL)continue;k1 += d1[i] -> ls -> sum;}
for(int i = 1;i <= t2;++i){if(d2[i] -> ls == NULL)continue;k2 += d2[i] -> ls -> sum;}
x = k2 - k1;
if(k > x)
{
k -= x;
for(int i = 1;i <= t1;++i){get(d1[i],2);d1[i] = d1[i] -> rs;}
for(int i = 1;i <= t2;++i){get(d2[i],2);d2[i] = d2[i] -> rs;}
_l = ((_l + _r) >> 1) + 1;
}
else
{
for(int i = 1;i <= t1;++i){get(d1[i],1);d1[i] = d1[i] -> ls;}
for(int i = 1;i <= t2;++i){get(d2[i],1);d2[i] = d2[i] -> ls;}
_r = (_l + _r) >> 1;
}
}
return b[s[_l]];
}
void change(int p,int x)
{
dec(p,a1[p]);
a1[p] = x;
add(p,x);
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
{
scanf("%d",&a1[i]);
b[++totn] = a1[i];
s[totn] = totn;
}
char k1;
for(int i = 1;i <= m;++i)
{
cin >> k1;
if(k1 == 'Q')
{
in[i][0] = 1;
scanf("%d%d%d",&in[i][1],&in[i][2],&in[i][3]);
}
else
{
in[i][0] = 0;
scanf("%d%d",&in[i][1],&in[i][2]);
b[++totn] = in[i][2];
s[totn] = totn;
}
}
sort(s + 1,s + 1 + totn,cmp);
for(int i = 1;i <= totn;++i)a2[s[i]] = i;
for(int i = 1;i <= n;++i)build(c[i]);
for(int i = 1;i <= n;++i)add(i,a1[i]);
for(int i = 1;i <= m;++i)
{
if(in[i][0] == 1)
{
printf("%d\n",query(in[i][1],in[i][2],in[i][3]));
}
else
{
change(in[i][1],in[i][2]);
}
}
return 0;
}
做法二:整体二分。
首先把最开始的数列变成单点赋值的操作,询问操作不变,单点修改操作变为一个单点清空,一个单点赋值,然后把整个操作序列和值域丢进去整体二分。
依次遍历所有操作,如果是修改操作,那么如果修改后的值小于等于
$mid$
,就在树状数组中把他加进去并丢到左区间,否则什么都不做并丢到右区间,如果是询问操作,那么就在树状数组中查询区间
$[l,r]$
,因为只把小于等于
$mid$
的数插进去,所以查询出来的结果只是这些区间中小于等于
$mid$
的数的个数,如果小于等于
$mid$
,就把它丢到左区间,否则
$-res$
,并丢到右区间,这样每个值域保存的就是在值域内的操作和询问。
简单来说整体二分就是对于一些二分
$check$
复杂度太高,如果每个询问都二分会超时,而很多
$check$
的预处理有很多公共部分,所以把这些询问的
$check$
放到一起。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#include<cctype>
#include<cstring>
using namespace std;
inline int read()
{
register int res = 0;
register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res;
}
inline char getc()
{
register char c = getchar();
while(c != 'Q' && c != 'C')c = getchar();
return c;
}
int n,m;
#define MAXN 100010
int a[MAXN];
int num[MAXN << 1],cur = 0;
int to[MAXN << 1],cnt = 0;
map<int,int> fr;
int ans[MAXN];
struct option
{
int type,x,y,k,id;
}q[MAXN * 3],q1[MAXN * 3],q2[MAXN * 3];
int tot = 0;
int c[MAXN << 1];
inline int lowbit(int x){return x & (-x);}
inline void add(int p,int k){for(register int i = p;i <= cnt;i += lowbit(i))c[i] += k;return;}
inline int query(int p){int res = 0;for(register int i = p;i >= 1;i -= lowbit(i))res += c[i];return res;}
void solve(int l,int r,int L,int R)
{
if(L == R)
{
for(register int i = l;i <= r;++i)if(q[i].id)ans[q[i].id] = L;
return;
}
register int mid = ((L + R) >> 1);
register int l1 = 0,l2 = 0;
for(register int i = l;i <= r;++i)
{
if(q[i].type)
{
if(fr[q[i].y] <= mid)add(q[i].x,q[i].k),q1[++l1] = q[i];
else q2[++l2] = q[i];
}
else
{
register int res = query(q[i].y) - query(q[i].x - 1);
if(q[i].k <= res)q1[++l1] = q[i];
else q[i].k -= res,q2[++l2] = q[i];
}
}
for(register int i = 1;i <= l1;++i)if(!q1[i].id)add(q1[i].x,-q1[i].k);
for(register int i = 1;i <= l1;++i)q[l + i - 1] = q1[i];
for(register int i = 1;i <= l2;++i)q[l + l1 - 1 + i] = q2[i];
solve(l,l + l1 - 1,L,mid);solve(l + l1,r,mid + 1,R);
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= n;++i)
{
a[i] = read();
q[++tot].x = i;q[tot].y = a[i];q[tot].type = 1;q[tot].k = 1;
num[++cur] = a[i];
}
register char c;
register int x,y;
for(register int i = 1;i <= m;++i)
{
c = getc();
if(c == 'Q')
{
++tot;
q[tot].x = read();q[tot].y = read();q[tot].k = read();
q[tot].id = i;q[tot].type = 0;
}
else
{
x = read();y = read();
q[++tot].type = 1;q[tot].k = -1;q[tot].x = x;q[tot].y = a[x];
q[++tot].type = 1;q[tot].k = 1;q[tot].x = x;q[tot].y = y;
a[x] = y;
num[++cur] = y;
}
}
sort(num + 1,num + 1 + cur);
for(register int i = 1;i <= cur;++i)
{
if(i == 1 || num[i] != num[i - 1])
{
to[++cnt] = num[i];
fr[num[i]] = cnt;
}
}
solve(1,tot,1,cnt);
for(register int i = 1;i <= m;++i)
{
if(ans[i])printf("%d\n",to[ans[i]]);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡