卧薪尝胆,厚积薄发。
康娜的线段树
Date: Thu Sep 27 16:41:26 CST 2018
In Category:
NoCategory
Description:
给一棵维护区间和的线段树,支持区间加,询问每次随机进入某棵子树整条路经的权值和。
$1\leqslant n \leqslant 10^6$
Solution:
一个显然的思路是按题意维护一棵线段树,树上再维护一个期望这样做是
$O(n\log n)$
的。
其实发现修改单个位置的值会把它到根的路径权值都加
$x$
,设这个叶子深度为
$dep[i]$
,那么这个单点修改会对答案造成的影响为
$\begin{align}\sum_{k=1}^{dep[i]}(\frac 1 2)^x\times k=(2-(\frac 1 2)^{dep[i]})\times k\end{align}$
,所以维护一个
$(\frac 1 2)^{dep[i]}$
前缀和区间整体操作即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
inline ll read()
{
register ll res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
f = (c == '-' ? -1 : 1);
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
ll n,m,k;
#define MAXN 1000010
ll dep[MAXN];
long double sum_dep[MAXN];
ll power[30];
void getdep(int l,int r,int d)
{
if(l == r)
{
dep[l] = d;
return;
}
register int mid = ((l + r) >> 1);
getdep(l,mid,d + 1);
getdep(mid + 1,r,d + 1);
return;
}
int main()
{
n = read();m = read();k = read();
getdep(1,n,0);
register long double ans = 0;
power[0] = 1;
for(register int i = 1;i <= 29;++i)power[i] = power[i - 1] * 2;
for(register int i = 1;i <= n;++i)
{
ans += (long double)read() * k * (2 - 1.0 / power[dep[i]]);
}
for(register int i = 1;i <= n;++i)sum_dep[i] = 1.0 / power[dep[i]] + sum_dep[i - 1];
register ll l,r,x;
for(register int i = 1;i <= m;++i)
{
l = read();r = read();x = read();
ans += ((r - l + 1) * 2 - (sum_dep[r] - sum_dep[l - 1])) * x * k;
x = ans;
printf("%lld\n",x);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡