卧薪尝胆,厚积薄发。
射命丸文的笔记
Date: Sat Mar 02 18:49:30 CST 2019
In Category:
NoCategory
Description:
求所有
$n$
个点带标号强连通竞赛图中哈密顿回路数量的平均值。
$1\leqslant n\leqslant 10^5$
Solution:
首先
$n$
个点的哈密顿回路总数为
$\frac{n!}n2^{\binom n2-n}$
,原因是哈密顿回路有
$\frac{n!}n$
个,要求这些边都出现,其他边随便连,也就是一个哈密顿回路会出现在
$2^{\binom n2-n}$
个竞赛图中,那么我们只要统计
$n$
个点的强连通竞赛图的个数就行了。设
$f[i]$
表示
$i$
个点的强连通竞赛图的个数,我们可以枚举拓扑序最小的强连通竞赛图的大小:
$$
f[i]=2^{\binom i2}-\sum_{j=1}^{i-1}f[j]\times \binom ij\times 2^{\binom{i-j}2}
$$
拆开就是:
$$
f[i]=2^{\binom i2}-i!\sum_{j=1}^{i-1}\frac{f[j]}{j!}\times \frac{2^{\binom{i-j}2}}{(i-j)!}
$$
设
$v[i]=\frac{2^{\binom i2}}{i!}$
,那么:
$$
\frac{f[i]}{i!}=v[i]-\sum_{j=0}^{i-1}\frac{f[j]}{j!}v[i-j]
$$
于是分治
$FFT$
即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 400010
int ww[MAXN << 1],*g = ww + MAXN;
int rev[MAXN];
#define P 998244353
int fac[MAXN],inv[MAXN];
int v[MAXN];
int cnt[MAXN];
int f[MAXN];
int power(int a,long long b)
{
int res = 1;
for(;b > 0;a = 1ll * a * a % P,b = b >> 1)if(b & 1)res = 1ll * res * a % P;
return res;
}
int inver(int a){return power(a,P - 2);}
int init(int n)
{
int l = 0,len = 1;
for(;len <= n;len = len << 1)++l;
for(int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
g[0] = g[-len] = 1;g[1] = g[1 - len] = power(3,(P - 1) / len);
for(int i = 2;i < len;++i)g[i] = g[i - len] = 1ll * g[i - 1] * g[1] % P;
return len;
}
void NTT(int f[],int l,int type)
{
for(int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(int i = 2;i <= l;i = i << 1)
{
int wn = g[type * l / i];
for(int j = 0;j < l;j += i)
{
int w = 1;
for(int k = j;k < j + i / 2;++k)
{
int u = f[k],t = 1ll * w * f[k + i / 2] % P;
f[k] = (u + t) % P;
f[k + i / 2] = (u - t + P) % P;
w = 1ll * w * wn % P;
}
}
}
if(type == -1)
{
int ni = power(l,P - 2);
for(int i = 0;i < l;++i)f[i] = 1ll * ni * f[i] % P;
}
return;
}
int tmp1[MAXN],tmp2[MAXN],res_[MAXN];
void solve(int l,int r)
{
if(l == r){f[l] = (v[l] - f[l] + P) % P;return;}
int mid = ((l + r) >> 1);
solve(l,mid);
int d2 = r - l,d1 = mid - l;
for(int i = 0;i <= d1;++i)tmp1[i] = f[i + l];
for(int i = 0;i <= d2;++i)tmp2[i] = v[i];
int len = init(d1 + d2);
NTT(tmp1,len,1);NTT(tmp2,len,1);
for(int i = 0;i < len;++i)res_[i] = 1ll * tmp1[i] * tmp2[i] % P;
NTT(res_,len,-1);
for(int i = 0;i < len;++i)tmp1[i] = tmp2[i] = 0;
for(int i = mid + 1;i <= r;++i)f[i] = (f[i] + res_[i - l]) % P;
solve(mid + 1,r);
return;
}
int main()
{
scanf("%d",&n);
fac[0] = 1;
for(int i = 1;i <= n;++i)fac[i] = 1ll * i * fac[i - 1] % P;
inv[n] = power(fac[n],P - 2);
for(int i = n - 1;i >= 0;--i)inv[i] = 1ll * inv[i + 1] * (i + 1) % P;
for(int i = 0;i <= n;++i)v[i] = 1ll * power(2,1ll * i * (i - 1) / 2 % (P - 1)) * power(fac[i],P - 2) % P;
solve(1,n);
for(int i = 1;i <= n;++i)cnt[i] = 1ll * fac[i - 1] * power(2,max(1ll * i * (i - 1) / 2 - i,0ll)) % P;
for(int i = 1;i <= n;++i)
{
int ans = 1ll * inver(1ll * f[i] * fac[i] % P) * cnt[i] % P;
if(ans == 0)puts("-1");
else printf("%d\n",ans);
}
return 0;
}
In tag:
数学-多项式-分治FFT
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡