卧薪尝胆,厚积薄发。
最小差值生成树
Date: Thu Nov 22 08:03:56 CST 2018
In Category:
NoCategory
Description:
给定一个标号为从
$1$
到
$n$
的、有
$m$
条边的无向图,求边权最大值与最小值的差值最小的生成树。
$1\leqslant n\leqslant 50000,1\leqslant m\leqslant 200000$
Solution:
类似NOI2014魔法森林,先把边排序,然后求出来一个最小生成树,用
$LCT$
维护,再枚举所有非树边,依次往里加,每次断掉一条树边,加一条非树边,然后用当前差值更新答案,注意最小值可以动态双指针,最大值维护一个变量
$cur$
每次更新
$cur$
。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<stack>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;
register char c = getchar();
while(!isdigit(c))
{
if(c == '-')f = -1;
c = getchar();
}
while(isdigit(c))
{
res = (res << 1) + (res << 3) + c - '0';
c = getchar();
}
return res * f;
}
int n,m;
#define MAXN 250010
#define MAXM 200010
struct edges
{
int u,v,w;
bool tag;
}es[MAXM];
bool cmp_w(edges a,edges b){return a.w < b.w;}
struct node
{
int c[2],fa,val,mv,pos;
bool rev;
node(){val = 0x3f3f3f3f;}
}t[MAXN];
inline bool isroot(int k){return (t[t[k].fa].c[0] != k && t[t[k].fa].c[1] != k);}
inline void connect(int k,int f,int p){t[k].fa = f;t[f].c[p] = k;return;}
inline int id(int k){return (t[t[k].fa].c[0] == k ? 0 : 1);}
inline void maintain(int k)
{
t[k].mv = t[k].val;t[k].pos = k;
if(t[k].c[0] != 0 && t[t[k].c[0]].mv < t[k].mv)
{
t[k].mv = t[t[k].c[0]].mv;
t[k].pos = t[t[k].c[0]].pos;
}
if(t[k].c[1] != 0 && t[t[k].c[1]].mv < t[k].mv)
{
t[k].mv = t[t[k].c[1]].mv;
t[k].pos = t[t[k].c[1]].pos;
}
return;
}
inline void pushdown(int k)
{
if(t[k].rev)
{
t[t[k].c[0]].rev ^= 1;t[t[k].c[1]].rev ^= 1;
swap(t[k].c[0],t[k].c[1]);t[k].rev = false;
}
return;
}
inline void rotate(int x)
{
register int y = t[x].fa,z = t[y].fa,fx = id(x),fy = id(y);
if(!isroot(y))t[z].c[fy] = x;
t[x].fa = z;
connect(t[x].c[fx ^ 1],y,fx);
connect(y,x,fx ^ 1);
maintain(y);maintain(x);
return;
}
stack<int> s;
inline void splay(int x)
{
s.push(x);
for(register int i = x;!isroot(i);i = t[i].fa)s.push(t[i].fa);
while(!s.empty()){pushdown(s.top());s.pop();}
while(!isroot(x))
{
register int y = t[x].fa;
if(isroot(y)){rotate(x);break;}
if(id(x) == id(y)){rotate(y);rotate(x);}
else{rotate(x);rotate(x);}
}
return;
}
inline void access(int k){for(register int i = 0;k;i = k,k = t[k].fa){splay(k);t[k].c[1] = i;maintain(k);}return;}
inline void makeroot(int k){access(k);splay(k);t[k].rev ^= 1;return;}
int f[MAXN];
int find(int x){return (x == f[x] ? x : f[x] = find(f[x]));}
inline void link(int x,int y){makeroot(x);t[x].fa = y;return;}
inline void split(int x,int y){makeroot(x);access(y);splay(y);return;}
void cut(int x,int y){makeroot(x);access(y);splay(y);t[y].c[0] = t[x].fa = 0;maintain(y);return;}
int main()
{
scanf("%d%d",&n,&m);
for(register int i = 1;i <= m;++i)
{
es[i].u = rd();es[i].v = rd();
es[i].w = rd();
}
for(register int i = 1;i <= n;++i)
{
f[i] = i;t[i].pos = i;maintain(i);
}
sort(es + 1,es + 1 + m,cmp_w);
register int ans = 0x3f3f3f3f;
int cur = 0;
for(register int i = 1;i <= m;++i)
{
if(es[i].u == es[i].v)continue;
t[i + n].val = es[i].w;t[i + n].pos = i + n;
maintain(i + n);
if(find(es[i].u) != find(es[i].v))
{
f[find(es[i].u)] = find(es[i].v);
link(es[i].u,i + n);link(es[i].v,i + n);
es[i].tag = true;
cur = i;
}
}
ans = (es[cur].w - es[1].w);
for(register int i = 1,j = 1;i <= m;++i)
{
if(es[i].u == es[i].v)continue;
if(!es[i].tag)
{
split(es[i].u,es[i].v);
int p = t[es[i].v].pos - n;
es[p].tag = false;
cut(es[p].u,p + n);cut(es[p].v,p + n);
link(es[i].u,i + n);link(es[i].v,i + n);
es[i].tag = true;
while(!es[j].tag)++j;
cur = max(cur,i);
if(es[cur].w - es[j].w < ans)
{
ans = es[cur].w - es[j].w;
}
}
}
cout << ans << endl;
return 0;
}
In tag:
数据结构-LCT
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡