卧薪尝胆,厚积薄发。
玩游戏
Date: Mon Mar 04 20:19:33 CST 2019
In Category:
NoCategory
Description:
求:
$$
ans[k]=\sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^k,k\in[1,t]
$$
$1\leqslant n,m,t\leqslant 10^5$
Solution:
先用二项式定理展开一下,然后交换求和号:
$$
ans[k]=\sum_{v=0}^k\binom kv\Bigl(\sum_{i=1}^na_i^v\Bigr)\Bigl(\sum_{j=1}^mb_j^{k-v}\Bigr)
$$
构造生成函数:
$$
A(x)=\sum_{i\geqslant 0}\Bigl(\sum_{k=1}^na_k^i\Bigr)x^i\\
B(x)=\sum_{i\geqslant 0}\Bigl(\sum_{k=1}^mb_k^i\Bigr)x^i
$$
那么:
$$
ans[k]=k!\sum_{v=0}^k\frac{[x^v]A(x)}{v!}\frac{[x^{k-v}]B(x)}{(k-v)!}
$$
如果我们能求出
$A(x)$
和
$B(x)$
,那么后面就是个卷积,
$NTT$
就可以了。
以
$A(x)$
为例:
$$
\begin{align}
F(x)&=\sum_{i\geqslant 0}\Bigl(\sum_{k=1}^na^i_k\Bigr)x^i\\
&=\sum_{k=1}^n\Bigl(\sum_{i\geqslant 0}a_k^ix^i\Bigr)
\end{align}
$$
也就是设:
$$
F_k(x)=\sum_{i\geqslant 0}a_k^ix^i=\frac1{1-a_kx}
$$
我们发现:
$$
\ln'(x)=\frac 1 x
$$
因此,根据链式法则,有:
$$
(\ln(1-a_kx))'=\ln'(1-a_kx)(1-a_kx)'=\frac{-a_k}{1-a_kx}=\sum_{i\geqslant 0}-a_k^{i+1}x^i=-\frac{F_k(x)-1}x
$$
设
$G_k(x)=(\ln(1-a_kx))'$
,也就是说
$G_k(x)=-\frac{F_k(x)-1}x\Longleftrightarrow F_k(x)=-xG(x)+1$
。
设:
$$
G(x)=\sum_{k=1}^nG_k(x)
$$
那么:
$$
F(x)=-xG(x)+n
$$
考虑怎么算
$G$
:
$$
G(x)=\sum_{k=1}^nG_k(x)=\sum_{k=1}^n(\ln(1-a_kx))'=\biggl(\ln\Bigl(\prod_{k=1}^n(1-a_kx)\Bigr)\biggr)'
$$
后面那个东西就可以分治
$NTT$
计算了,然后再搬一个多项式
$\ln$
的板子就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
int t;
#define MAXN 270000
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
#define R register
#define I inline
int a[MAXN],b[MAXN];
int fac[MAXN],ifac[MAXN];
#define P 998244353
namespace polynomial
{
I int power(int a,int b)
{
R int res = 1;
for(;b > 0;b = b >> 1,a = 1ll * a * a % P)if(b & 1)res = 1ll * res * a % P;
return res;
}
I int inver(int a){return power(a,P - 2);}
int cnt = 0;
struct poly
{
int a[MAXN];
int d;
I int& operator [](int x){return a[x];}
I int operator [](int x)const{return a[x];}
poly(){d = 0;memset(a,0,sizeof(a));}
I poly& operator =(const poly& b)
{
for(R int i = b.d + 1;i <= d;++i)a[i] = 0;
d = b.d;
for(R int i = 0;i <= b.d;++i)a[i] = b[i];
return *this;
}
I void clear()
{
for(R int i = 0;i <= d;++i)a[i] = 0;
d = 0;
return;
}
};
int rev[MAXN];
int ww[MAXN << 1],*g = ww + MAXN;
I int init(int n)
{
R int l = 0,len = 1;
for(;len <= n;len = len << 1)++l;
for(R int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
g[0] = g[-len] = 1;g[1] = g[1 - len] = power(3,(P - 1) / len);
for(R int i = 2;i < len;++i)g[i] = g[i - len] = 1ll * g[i - 1] * g[1] % P;
return len;
}
I void NTT(poly &f,int l,int type)
{
for(R int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(R int i = 2;i <= l;i = i << 1)
{
R int wn = g[type * l / i];
for(R int j = 0;j < l;j += i)
{
R int w = 1;
for(R int k = j;k < j + i / 2;++k)
{++cnt;
R int u = f[k],t = 1ll * f[k + i / 2] * w % P;
f[k] = (u + t >= P ? u + t - P : u + t);
f[k + i / 2] = (u - t < 0 ? u - t + P : u - t);
w = 1ll * w * wn % P;
}
}
}
if(type == -1)
{
R int ni = power(l,P - 2);
for(R int i = 0;i < l;++i)f[i] = 1ll * f[i] * ni % P;
}
return;
}
I poly operator * (poly &a,poly &b)
{
poly x = a,y = b;
x.d = a.d + b.d;
R int len = init(x.d);
NTT(x,len,1);NTT(y,len,1);
for(R int i = 0;i < len;++i)x[i] = 1ll * x[i] * y[i] % P;
NTT(x,len,-1);
return x;
}
poly invtmp;
void calc_inv(poly &a,poly &b,int deg)
{
if(deg == 1)
{
b[0] = power(a[0],P - 2);
return;
}
calc_inv(a,b,((deg + 1) >> 1));
R int len = init(deg << 1);
for(R int i = 0;i < deg;++i)invtmp[i] = a[i];
for(R int i = deg;i < len;++i)invtmp[i] = 0;
NTT(invtmp,len,1);NTT(b,len,1);
for(R int i = 0;i < len;++i)b[i] = (2ll * b[i] - 1ll * b[i] * b[i] % P * invtmp[i] % P + P) % P;
NTT(b,len,-1);
for(R int i = deg;i < len;++i)b[i] = 0;
return;
}
I poly inv(poly k,poly &res,int deg)
{
calc_inv(k,res,deg + 1);
res.d = deg;
while(res.d > 0 && res[res.d] == 0)--res.d;
return res;
}
}
using namespace polynomial;
poly s[19];
int val[MAXN];
void solve(int d,int l,int r)
{
if(l == r){s[d].clear();s[d][0] = 1;s[d][1] = (P - val[l]) % P;s[d].d = 1;return;}
R int mid = ((l + r) >> 1);
solve(d + 1,l,mid);s[d] = s[d + 1];
solve(d + 1,mid + 1,r);
s[d].d = s[d].d + s[d + 1].d;
R int len = init(s[d].d);
NTT(s[d],len,1);NTT(s[d + 1],len,1);
for(R int i = 0;i < len;++i)s[d][i] = 1ll * s[d][i] * s[d + 1][i] % P;
NTT(s[d],len,-1);
for(int i = 0;i < len;++i)s[d + 1][i] = 0;
return;
}
poly calc(int a[],int n,int deg)
{
for(R int i = 1;i <= n;++i)val[i] = a[i];
solve(1,1,n);
R poly k;
R poly x;x.d = s[1].d - 1;for(R int i = 0;i <= x.d;++i)x[i] = 1ll * (i + 1) * s[1][i + 1] % P;
R poly y;calc_inv(s[1],y,deg + 1);y.d = deg;while(y.d > 0 && y[y.d] == 0)--y.d;
x.d = x.d + y.d;
R int len = init(x.d);
NTT(x,len,1);NTT(y,len,1);
for(R int i = 0;i < len;++i)x[i] = 1ll * x[i] * y[i] % P;
NTT(x,len,-1);
s[1].clear();
for(R int i = deg + 1;i <= x.d;++i)x[i] = 0;x.d = deg;
for(R int i = deg;i >= 0;--i)x[i] = 1ll * x[i - 1] * (P - 1) % P;
x[0] = n % P;
return x;
}
int main()
{freopen("in.in","r",stdin);freopen("out.out","w",stdout);
scanf("%d%d",&n,&m);
for(R int i = 1;i <= n;++i)a[i] = rd();
for(R int i = 1;i <= m;++i)b[i] = rd();
scanf("%d",&t);
R poly A = calc(a,n,t),B = calc(b,m,t);
fac[0] = 1;for(R int i = 1;i <= t;++i)fac[i] = 1ll * fac[i - 1] * i % P;
ifac[t] = power(fac[t],P - 2);for(R int i = t - 1;i >= 0;--i)ifac[i] = 1ll * ifac[i + 1] * (i + 1) % P;
for(R int i = 0;i <= A.d;++i)A[i] = 1ll * A[i] * ifac[i] % P;
for(R int i = 0;i <= B.d;++i)B[i] = 1ll * B[i] * ifac[i] % P;
R poly res = A * B;
for(R int i = 1;i <= t;++i)printf("%lld\n",1ll * res[i] * fac[i] % P * inver(1ll * n * m % P) % P);
return 0;
}
In tag:
数学-多项式-多项式对数函数 数学-组合数学-生成函数
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡