卧薪尝胆,厚积薄发。
Check,Check,Check one two!
Date: Wed Mar 27 19:58:36 CST 2019
In Category:
NoCategory
Description:
给一个字符串
$S$
,求:
$$
\sum_{1\leqslant i<j\leqslant n}lcp(i,j)lcs(i,j)[lcp(i,j)\leqslant k_1][lcs(i,j)\leqslant k_2]
$$
$1\leqslant n\leqslant 10^5$
Solution1:
首先建出正串和反串的后缀树,然后由于
$lcp(i,j)=s[LCA(i,j)].maxl$
,那么我们设
$val[i]=(s[i].maxl>k?0:s[i].maxl)$
,然后问题就变成了:
$$
\sum_{1\leqslant i<j\leqslant n}val_1(LCA_1(i,j))val_2(LCA_2(i,j))
$$
于是就可以边分树合并或者边分治
$+$
虚树统计答案了。
Code1:
没有代码
Solution2:
对于两个位置
$i,j$
,我们考虑把
$lcs(i,j)$
和
$lcp(i,j)$
拼起来得到一个长为
$lcs(i,j)+lcp(i,j)-1$
,并且再往后或者往前一个字符都不相同的串,我们可以计算出这样的一个串的贡献是:
$$
\sum_{i=\max(len-k_2+1,1)}^{\min(k_1,len)}i\times (len-i+1)
$$
我们可以对于所有的
$len$
预处理这个值,然后我们建出
$S$
的后缀数组,考虑像品酒大会那样合并,也就是说从大到小一次去掉隔板,那么两个后缀
$(i,j)$
会产生贡献当且仅当
$S[i-1]\ne S[j-1]$
并且
$lcp(i,j)\ne 0$
,那么我们可以计算所有后缀对的贡献,然后减掉相同字符的,这个开一个
$26$
的桶记一下就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int n;
#define MAXN 200010
char s[MAXN];
int k1,k2;
int c[MAXN],c1[MAXN],c2[MAXN],sa[MAXN],h[MAXN],rnk[MAXN];
vector<int> vec[MAXN];
int pc[MAXN];
void make_SA(int n,int m)
{
int *x = c1,*y = c2;
int p = 0;
for(int i = 1;i <= m;++i)c[i] = 0;
for(int i = 1;i <= n;++i)++c[x[i] = s[i]];
for(int i = 1;i <= m;++i)c[i] += c[i - 1];
for(int i = n;i >= 1;--i)sa[c[x[i]]--] = i;
for(int k = 1;k <= n;k = k << 1)
{
p = 0;
for(int i = 1;i <= n;++i)y[i] = 0;
for(int i = n - k + 1;i <= n;++i)y[++p] = i;
for(int i = 1;i <= n;++i)if(sa[i] > k)y[++p] = sa[i] - k;
for(int i = 1;i <= m;++i)c[i] = 0;
for(int i = 1;i <= n;++i)++c[x[y[i]]];
for(int i = 1;i <= m;++i)c[i] += c[i - 1];
for(int i = n;i >= 1;--i)sa[c[x[y[i]]]--] = y[i];
p = 1;
swap(x,y);
x[sa[1]] = 1;
for(int i = 2;i <= n;++i)
{
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
}
if(p >= n)break;
m = p;
}
for(int i = 1;i <= n;++i)rnk[sa[i]] = i;
int k = 0;
for(int i = 1;i <= n;++i)
{
if(rnk[i] == 1)continue;
if(k)--k;
int j = sa[rnk[i] - 1];
while(j + k <= n && i + k <= n && s[i + k] == s[j + k])++k;
h[rnk[i]] = k;
}
for(int i = 1;i <= n;++i)vec[h[i]].push_back(i);
for(int i = 1;i <= n;++i)pc[rnk[i]] = (i == 1 ? 0 : s[i - 1] - 'a' + 1);
return;
}
typedef unsigned long long ull;
ull val[MAXN];
ull sum1(int n){return 1ull * n * (n + 1) / 2;}
ull sum2(int n){return 1ull * n * (n + 1) * (2 * n + 1) / 6;}
ull sum1(int l,int r){return sum1(r) - sum1(l - 1);}
ull sum2(int l,int r){return sum2(r) - sum2(l - 1);}
int cnt[MAXN][27];
int f[MAXN],siz[MAXN];
int find(int x){return (f[x] == 0 ? x : f[x] = find(f[x]));}
int main()
{
scanf("%s",s + 1);
n = strlen(s + 1);
scanf("%d%d",&k1,&k2);
if(k1 < k2)
{
swap(k1,k2);
for(int i = 1,j = n;i < j;++i,--j)swap(s[i],s[j]);
}
make_SA(n,256);
for(int len = 1;len <= k2;++len)val[len] = sum1(len) * (len + 1) - sum2(len);
for(int len = k2 + 1;len <= k1;++len)val[len] = sum1(len - k2 + 1,len) * (len + 1) - sum2(len - k2 + 1,len);
for(int len = k1 + 1;len <= min(n,k1 + k2 - 1);++len)val[len] = sum1(len - k2 + 1,k1) * (len + 1) - sum2(len - k2 + 1,k1);
ull ans = 0;
for(int i = 1;i <= n;++i)siz[i] = 1,cnt[i][pc[i]] = 1;
for(int i = n;i >= 1;--i)
{
for(vector<int>::iterator it = vec[i].begin();it != vec[i].end();++it)
{
int p = find(*it - 1),q = find(*it);
ans += val[i] * siz[p] * siz[q];
for(int x = 1;x <= 26;++x)ans -= val[i] * cnt[p][x] * cnt[q][x];
siz[p] += siz[q];
for(int x = 1;x <= 26;++x)cnt[p][x] += cnt[q][x];
f[q] = p;
}
}
cout << ans << endl;
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡