卧薪尝胆,厚积薄发。
USACO2007DEC GOLD Sightseeing Cows
Date: Thu Sep 06 21:45:16 CST 2018
In Category:
NoCategory
Description:
一个无向图,点有权值,边有代价,找一个回路,可以重复经过点,权值不累加,可以多次经过边,代价累加,最小化
$\sum权值/\sum代价$
。
$1\le n \le 1000,1\le m \le 5000$
Solution:
$01$
分数规划,可以发现最终路径一定没有环套环的情况,也就是说边只经过一次,权值和代价不在一起,那就把边的权值设为终点的权值,反正最终一定是回路,然后
$01$
分数规划,设当前二分的值为
$mid$
,然后把所有边的边权都设为
$v-mid\times c$
,然后用
$SPFA$
判断是否存在负环
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 1010
double val[MAXN];
#define MAXM 5010
struct edge
{
int to,nxt;
double v,c;
}e[MAXM << 1];
int edgenum = 0;
int lin[MAXN] = {0};
void add(int a,int b,double c)
{
++edgenum;e[edgenum].to = b;e[edgenum].c = c;e[edgenum].v = val[b];e[edgenum].nxt = lin[a];lin[a] = edgenum;
return;
}
bool vis[MAXN];
double dis[MAXN];
bool negcir;
void dfs(int k,double x)
{
vis[k] = true;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
double c = e[i].v - x * e[i].c;
if(dis[e[i].to] >= dis[k] + c)continue;
if(vis[e[i].to]){negcir = true;return;}
dis[e[i].to] = dis[k] + c;
dfs(e[i].to,x);
if(negcir)return;
}
vis[k] = false;
}
bool check(double x)
{
for(int i = 1;i <= n;++i)vis[i] = dis[i] = 0;
negcir = false;
for(int i = 1;i <= n;++i)
{
dfs(i,x);
if(negcir)return true;
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)scanf("%lf",&val[i]);
int a,b,c;
for(int i = 1;i <= m;++i)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,(double)c);
}
double l = 0,r = 1000000000,mid;
while(r - l > 1e-6)
{
mid = (l + r) / 2;
if(check(mid))l = mid;
else r = mid;
}
printf("%.2lf\n",l);
return 0;
}
In tag:
算法-01分数规划
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡