卧薪尝胆,厚积薄发。
Cipher Message 3
Date: Sat Jan 12 16:06:16 CST 2019
In Category:
NoCategory
Description:
给两个串,每个串由若干数字组成,可以翻转某个数字的最后一位,问最少需要翻转几次是的存在一个位置可以匹配,求出匹配的位置和翻转的位的个数。
$1\leqslant n\leqslant 250000$
Solution:
先对前
$l-1$
位形成的串跑
$KMP$
,得到可能匹配的位置,就可以不用管前几位了,构造一个函数:
$$
c[i]=\sum_{k=0}^i(a[i-k]-b^R[k])^2
$$
拆开后显然是两个平方和一个卷积,于是直接求就好了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 2000010
int rd2()
{
register char c = getchar();
register int res = 0;
while(!isdigit(c))c = getchar();
while(isdigit(c))
{
res = (res << 1) | (c - '0');
c = getchar();
}
return res;
}
int x[MAXN],y[MAXN];
int sx[MAXN],sy[MAXN];
struct comp
{
double r,i;
}a[MAXN],b[MAXN],c[MAXN];
comp operator + (comp a,comp b){return (comp){a.r + b.r,a.i + b.i};}
comp operator - (comp a,comp b){return (comp){a.r - b.r,a.i - b.i};}
comp operator * (comp a,comp b){return (comp){a.r * b.r - a.i * b.i,a.r * b.i + a.i * b.r};}
int rev[MAXN];
const double PI = acos(-1);
void FFT(comp f[],int l,int type)
{
for(int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(int i = 2;i <= l;i = i << 1)
{
comp wn = (comp){cos(-type * 2 * PI / i),sin(-type * 2 * PI / i)};
for(int j = 0;j < l;j += i)
{
comp w = (comp){1,0};
for(int k = j;k < j + i / 2;++k)
{
comp u = f[k],t = w * f[k + i / 2];
f[k] = u + t;
f[k + i / 2] = u - t;
w = w * wn;
}
}
}
if(type == -1)
{
for(int i = 0;i < l;++i)f[i].r /= l;
}
return;
}
int s[MAXN],t[MAXN];
int nxt[MAXN];
int res[MAXN];
pair<int,int> ans;
int main()
{
scanf("%d%d",&n,&m);
if(m > n)
{
cout << "No" << endl;
return 0;
}
for(int i = 1;i <= n;++i)x[i] = rd2();
for(int i = 1;i <= m;++i)y[i] = rd2();
for(int i = 0;i < n;++i)a[i].r = x[i + 1] & 1;
for(int i = 0;i < m;++i)b[m - 1 - i].r = y[i + 1] & 1;
for(int i = 0;i < n;++i)sx[i] = sx[i - 1] + a[i].r;
for(int i = 0;i < m;++i)sy[i] = sy[i - 1] + b[i].r;
int l = 0,len = 1;
for(;len <= (n + m) * 2;len = len << 1)++l;
for(int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
FFT(a,len,1);FFT(b,len,1);
for(int i = 0;i < len;++i)c[i] = a[i] * b[i];
FFT(c,len,-1);
for(int i = m - 1;i < n;++i)
{
c[i].r = c[i].r * (-2);
c[i].r += sx[i] - sx[i - m] + sy[m - 1];
}
for(int i = m;i <= n;++i)res[i] = int(c[i - 1].r + 0.5);
ans.first = ans.second = 0x3f3f3f3f;
for(int i = 1;i <= n;++i)s[i] = x[i] >> 1;
for(int i = 1;i <= m;++i)t[i] = y[i] >> 1;
for(int i = 2,j = 0;i <= m;++i)
{
while(j && t[j + 1] != t[i])j = nxt[j];
if(t[j + 1] == t[i])++j;
nxt[i] = j;
}
for(int i = 1,j = 0;i <= n;++i)
{
while(j && t[j + 1] != s[i])j = nxt[j];
if(t[j + 1] == s[i])++j;
if(i >= m && j == m)
{
ans = min(ans,make_pair(res[i],i - m + 1));
}
}
if(ans.first == 0x3f3f3f3f)cout << "No" << endl;
else cout << "Yes" << endl << ans.first << " " << ans.second << endl;
return 0;
}
In tag:
字符串-KMP 数学-多项式-快速傅里叶变换
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡