卧薪尝胆,厚积薄发。
数星星
Date: Fri Mar 08 21:50:50 CST 2019
In Category:
NoCategory
Description:
给出平面上
$n$
个整点和一个数
$K$
,
$m$
次询问每次给出一个点,询问以这个点为左下点底边平行于
$x$
轴的正三角形最小整边长。
$1\leqslant n\leqslant 10^5$
Solution:
首先不难发现可以二分,但是直接二分复杂度是错的,因为二维数点复杂度就是
$O(n)$
,于是我们可以把所有询问放在一起二分,也就是说先把值域补成
$2$
的幂,然后每次二维数点就行了,由于这题是统计正三角形内点的个数因此要转坐标系。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m,k;
#define MAXN 300010
struct point
{
double x,y;
}p[MAXN];
struct query
{
double x,y;
int l,r;
}q[MAXN];
bool cmp_p(point a,point b){return (a.x == b.x ? a.y < b.y : a.x < b.x);}
#define N 100000000
namespace ST
{
struct node
{
int lc,rc;
int sum;
}t[MAXN * 30];
int ptr = 0,root;
int newnode(){return ++ptr;}
#define mid ((l + r) >> 1)
void insert(int &rt,int p,int l,int r)
{
if(rt == 0)rt = newnode();
t[rt].sum += 1;
if(l == r)return;
if(p <= mid)insert(t[rt].lc,p,l,mid);
else insert(t[rt].rc,p,mid + 1,r);
return;
}
int query(int rt,int L,int R,int l,int r)
{
if(rt == 0)return 0;
if(L <= l && r <= R)return t[rt].sum;
int res = 0;
if(L <= mid)res += query(t[rt].lc,L,R,l,mid);
if(R > mid)res += query(t[rt].rc,L,R,mid + 1,r);
return res;
}
void clear(int &rt,int l,int r)
{
if(rt == 0)return;
if(l != r)clear(t[rt].lc,l,mid),clear(t[rt].rc,mid + 1,r);
t[rt].sum = t[rt].lc = t[rt].rc = 0;
rt = 0;
return;
}
}
struct CNT
{
struct poi
{
double x,y;
int tp;
bool operator < (const poi &b)const{return (x == b.x ? y < b.y : x < b.x);}
}s[MAXN * 5];
int pnum;
int ans[MAXN];
double v[MAXN];
int vcnt;
void addp(double x,double y){v[++vcnt] = y;s[++pnum] = (poi){x,y,0};return;}
void addq(double x,double y,int id){s[++pnum] = (poi){x,y,id};return;}
void calc()
{
v[++vcnt] = 1000000000;v[++vcnt] = -1000000000;
memset(ans,0,sizeof(ans));
sort(v + 1,v + 1 + vcnt);
vcnt = unique(v + 1,v + 1 + vcnt) - v - 1;
sort(s + 1,s + 1 + pnum);
for(int i = 1;i <= pnum;++i)s[i].y = upper_bound(v + 1,v + 1 + vcnt,s[i].y) - v - 1;
for(int i = 1;i <= pnum;++i)
{
if(s[i].tp == 0)ST::insert(ST::root,s[i].y,0,N);
else
{
int res = ST::query(ST::root,0,min(s[i].y,1.0 * N),0,N);
if(s[i].tp > 0)ans[s[i].tp] += res;
else ans[-s[i].tp] -= res;
}
}
ST::clear(ST::root,0,N);
ST::ptr = 0;vcnt = pnum = 0;
return;
}
}c1,c2;
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i = 1;i <= n;++i)scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i = 1;i <= m;++i)
{
scanf("%lf%lf",&q[i].x,&q[i].y);
q[i].l = 0;q[i].r = 1073741823;
}
int len = 1073741824;
while(len != 1)
{
for(int i = 1;i <= n;++i)
{
c1.addp(p[i].x - 1.0 / sqrt(3) * p[i].y,p[i].y);
c2.addp(p[i].x + 1.0 / sqrt(3) * p[i].y,p[i].y);
}
for(int i = 1;i <= m;++i)
{
int mi = (q[i].l + q[i].r) / 2;
c1.addq(q[i].x - 1.0 / sqrt(3) * q[i].y - 0.0001,q[i].y + 1.0 * mi / 2 * sqrt(3),-i);
c1.addq(q[i].x - 1.0 / sqrt(3) * q[i].y - 0.0001,q[i].y - 1,i);
c2.addq(q[i].x + mi + 1.0 / sqrt(3) * q[i].y,q[i].y + 1.0 * mi / 2 * sqrt(3),i);
c2.addq(q[i].x + mi + 1.0 / sqrt(3) * q[i].y,q[i].y - 1,-i);
}
c1.calc();c2.calc();
for(int i = 1;i <= m;++i)
{
int mi = (q[i].l + q[i].r) / 2;
if(c2.ans[i] + c1.ans[i] >= k)q[i].r = mi;
else q[i].l = mi + 1;
}
len = len >> 1;
}
for(int i = 1;i <= m;++i)printf("%d\n",(q[i].l == 1073741823 ? -1 : q[i].l));
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡